|
|
|
@ -5,7 +5,6 @@ import numpy as np |
|
|
|
|
from casadi import SX, vertcat, sin, cos |
|
|
|
|
|
|
|
|
|
from common.realtime import sec_since_boot |
|
|
|
|
from selfdrive.controls.lib.drive_helpers import LAT_MPC_N as N |
|
|
|
|
from selfdrive.modeld.constants import T_IDXS |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': # generating code |
|
|
|
@ -18,6 +17,9 @@ EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code") |
|
|
|
|
JSON_FILE = os.path.join(LAT_MPC_DIR, "acados_ocp_lat.json") |
|
|
|
|
X_DIM = 4 |
|
|
|
|
P_DIM = 2 |
|
|
|
|
N = 16 |
|
|
|
|
COST_E_DIM = 3 |
|
|
|
|
COST_DIM = COST_E_DIM + 1 |
|
|
|
|
MODEL_NAME = 'lat' |
|
|
|
|
ACADOS_SOLVER_TYPE = 'SQP_RTI' |
|
|
|
|
|
|
|
|
@ -29,8 +31,8 @@ def gen_lat_model(): |
|
|
|
|
x_ego = SX.sym('x_ego') |
|
|
|
|
y_ego = SX.sym('y_ego') |
|
|
|
|
psi_ego = SX.sym('psi_ego') |
|
|
|
|
curv_ego = SX.sym('curv_ego') |
|
|
|
|
model.x = vertcat(x_ego, y_ego, psi_ego, curv_ego) |
|
|
|
|
psi_rate_ego = SX.sym('psi_rate_ego') |
|
|
|
|
model.x = vertcat(x_ego, y_ego, psi_ego, psi_rate_ego) |
|
|
|
|
|
|
|
|
|
# parameters |
|
|
|
|
v_ego = SX.sym('v_ego') |
|
|
|
@ -38,22 +40,22 @@ def gen_lat_model(): |
|
|
|
|
model.p = vertcat(v_ego, rotation_radius) |
|
|
|
|
|
|
|
|
|
# controls |
|
|
|
|
curv_rate = SX.sym('curv_rate') |
|
|
|
|
model.u = vertcat(curv_rate) |
|
|
|
|
psi_accel_ego = SX.sym('psi_accel_ego') |
|
|
|
|
model.u = vertcat(psi_accel_ego) |
|
|
|
|
|
|
|
|
|
# xdot |
|
|
|
|
x_ego_dot = SX.sym('x_ego_dot') |
|
|
|
|
y_ego_dot = SX.sym('y_ego_dot') |
|
|
|
|
psi_ego_dot = SX.sym('psi_ego_dot') |
|
|
|
|
curv_ego_dot = SX.sym('curv_ego_dot') |
|
|
|
|
psi_rate_ego_dot = SX.sym('psi_rate_ego_dot') |
|
|
|
|
|
|
|
|
|
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, curv_ego_dot) |
|
|
|
|
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, psi_rate_ego_dot) |
|
|
|
|
|
|
|
|
|
# dynamics model |
|
|
|
|
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * (v_ego * curv_ego), |
|
|
|
|
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * (v_ego * curv_ego), |
|
|
|
|
v_ego * curv_ego, |
|
|
|
|
curv_rate) |
|
|
|
|
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * psi_rate_ego, |
|
|
|
|
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * psi_rate_ego, |
|
|
|
|
psi_rate_ego, |
|
|
|
|
psi_accel_ego) |
|
|
|
|
model.f_impl_expr = model.xdot - f_expl |
|
|
|
|
model.f_expl_expr = f_expl |
|
|
|
|
return model |
|
|
|
@ -72,26 +74,28 @@ def gen_lat_ocp(): |
|
|
|
|
ocp.cost.cost_type = 'NONLINEAR_LS' |
|
|
|
|
ocp.cost.cost_type_e = 'NONLINEAR_LS' |
|
|
|
|
|
|
|
|
|
Q = np.diag([0.0, 0.0]) |
|
|
|
|
QR = np.diag([0.0, 0.0, 0.0]) |
|
|
|
|
Q = np.diag(np.zeros(COST_E_DIM)) |
|
|
|
|
QR = np.diag(np.zeros(COST_DIM)) |
|
|
|
|
|
|
|
|
|
ocp.cost.W = QR |
|
|
|
|
ocp.cost.W_e = Q |
|
|
|
|
|
|
|
|
|
y_ego, psi_ego = ocp.model.x[1], ocp.model.x[2] |
|
|
|
|
curv_rate = ocp.model.u[0] |
|
|
|
|
y_ego, psi_ego, psi_rate_ego = ocp.model.x[1], ocp.model.x[2], ocp.model.x[3] |
|
|
|
|
psi_rate_ego_dot = ocp.model.u[0] |
|
|
|
|
v_ego = ocp.model.p[0] |
|
|
|
|
|
|
|
|
|
ocp.parameter_values = np.zeros((P_DIM, )) |
|
|
|
|
|
|
|
|
|
ocp.cost.yref = np.zeros((3, )) |
|
|
|
|
ocp.cost.yref_e = np.zeros((2, )) |
|
|
|
|
ocp.cost.yref = np.zeros((COST_DIM, )) |
|
|
|
|
ocp.cost.yref_e = np.zeros((COST_E_DIM, )) |
|
|
|
|
# TODO hacky weights to keep behavior the same |
|
|
|
|
ocp.model.cost_y_expr = vertcat(y_ego, |
|
|
|
|
((v_ego + 5.0) * psi_ego), |
|
|
|
|
((v_ego + 5.0) * 4.0 * curv_rate)) |
|
|
|
|
((v_ego + 5.0) * psi_rate_ego), |
|
|
|
|
((v_ego + 5.0) * psi_rate_ego_dot)) |
|
|
|
|
ocp.model.cost_y_expr_e = vertcat(y_ego, |
|
|
|
|
((v_ego +5.0) * psi_ego)) |
|
|
|
|
((v_ego + 5.0) * psi_ego), |
|
|
|
|
((v_ego + 5.0) * psi_rate_ego)) |
|
|
|
|
|
|
|
|
|
# set constraints |
|
|
|
|
ocp.constraints.constr_type = 'BGH' |
|
|
|
@ -124,10 +128,10 @@ class LateralMpc(): |
|
|
|
|
def reset(self, x0=np.zeros(X_DIM)): |
|
|
|
|
self.x_sol = np.zeros((N+1, X_DIM)) |
|
|
|
|
self.u_sol = np.zeros((N, 1)) |
|
|
|
|
self.yref = np.zeros((N+1, 3)) |
|
|
|
|
self.yref = np.zeros((N+1, COST_DIM)) |
|
|
|
|
for i in range(N): |
|
|
|
|
self.solver.cost_set(i, "yref", self.yref[i]) |
|
|
|
|
self.solver.cost_set(N, "yref", self.yref[N][:2]) |
|
|
|
|
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) |
|
|
|
|
|
|
|
|
|
# Somehow needed for stable init |
|
|
|
|
for i in range(N+1): |
|
|
|
@ -140,14 +144,13 @@ class LateralMpc(): |
|
|
|
|
self.solve_time = 0.0 |
|
|
|
|
self.cost = 0 |
|
|
|
|
|
|
|
|
|
def set_weights(self, path_weight, heading_weight, steer_rate_weight): |
|
|
|
|
W = np.asfortranarray(np.diag([path_weight, heading_weight, steer_rate_weight])) |
|
|
|
|
def set_weights(self, path_weight, heading_weight, yaw_rate_weight, yaw_accel_cost): |
|
|
|
|
W = np.asfortranarray(np.diag([path_weight, heading_weight, yaw_rate_weight, yaw_accel_cost])) |
|
|
|
|
for i in range(N): |
|
|
|
|
self.solver.cost_set(i, 'W', W) |
|
|
|
|
#TODO hacky weights to keep behavior the same |
|
|
|
|
self.solver.cost_set(N, 'W', (3/20.)*W[:2,:2]) |
|
|
|
|
self.solver.cost_set(N, 'W', W[:COST_E_DIM,:COST_E_DIM]) |
|
|
|
|
|
|
|
|
|
def run(self, x0, p, y_pts, heading_pts, curv_rate_pts): |
|
|
|
|
def run(self, x0, p, y_pts, heading_pts, yaw_rate_pts): |
|
|
|
|
x0_cp = np.copy(x0) |
|
|
|
|
p_cp = np.copy(p) |
|
|
|
|
self.solver.constraints_set(0, "lbx", x0_cp) |
|
|
|
@ -156,12 +159,12 @@ class LateralMpc(): |
|
|
|
|
v_ego = p_cp[0] |
|
|
|
|
# rotation_radius = p_cp[1] |
|
|
|
|
self.yref[:,1] = heading_pts * (v_ego+5.0) |
|
|
|
|
self.yref[:,2] = curv_rate_pts * (v_ego+5.0) * 4.0 |
|
|
|
|
self.yref[:,2] = yaw_rate_pts * (v_ego+5.0) |
|
|
|
|
for i in range(N): |
|
|
|
|
self.solver.cost_set(i, "yref", self.yref[i]) |
|
|
|
|
self.solver.set(i, "p", p_cp) |
|
|
|
|
self.solver.set(N, "p", p_cp) |
|
|
|
|
self.solver.cost_set(N, "yref", self.yref[N][:2]) |
|
|
|
|
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) |
|
|
|
|
|
|
|
|
|
t = sec_since_boot() |
|
|
|
|
self.solution_status = self.solver.solve() |
|
|
|
|