Adeeb Shihadeh 2 days ago committed by GitHub
commit ac5e96277e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 4
      pyproject.toml
  2. 2
      system/manager/process_config.py
  3. 2
      system/ubloxd/.gitignore
  4. 26
      system/ubloxd/SConscript
  5. 353
      system/ubloxd/generated/glonass.cpp
  6. 375
      system/ubloxd/generated/glonass.h
  7. 247
      system/ubloxd/generated/glonass.py
  8. 325
      system/ubloxd/generated/gps.cpp
  9. 359
      system/ubloxd/generated/gps.h
  10. 193
      system/ubloxd/generated/gps.py
  11. 424
      system/ubloxd/generated/ubx.cpp
  12. 484
      system/ubloxd/generated/ubx.h
  13. 273
      system/ubloxd/generated/ubx.py
  14. 20
      system/ubloxd/tests/print_gps_stats.py
  15. 89
      system/ubloxd/tests/ubloxd.py
  16. 530
      system/ubloxd/ublox_msg.cc
  17. 131
      system/ubloxd/ublox_msg.h
  18. 62
      system/ubloxd/ubloxd.cc
  19. 438
      system/ubloxd/ubloxd.py
  20. 1
      third_party/SConscript
  21. 16
      third_party/kaitai/custom_decoder.h
  22. 189
      third_party/kaitai/exceptions.h
  23. 689
      third_party/kaitai/kaitaistream.cpp
  24. 268
      third_party/kaitai/kaitaistream.h
  25. 20
      third_party/kaitai/kaitaistruct.h
  26. 77
      uv.lock

@ -36,6 +36,9 @@ dependencies = [
"pyopenssl < 24.3.0",
"pyaudio",
# ubloxd (can be removed with struct)
"kaitaistruct",
# panda
"libusb1",
"spidev; platform_system == 'Linux'",
@ -247,6 +250,7 @@ exclude = [
"teleoprtc_repo",
"third_party",
"*.ipynb",
"generated",
]
lint.flake8-implicit-str-concat.allow-multiline = false

@ -97,7 +97,7 @@ procs = [
PythonProcess("pandad", "selfdrive.pandad.pandad", always_run),
PythonProcess("paramsd", "selfdrive.locationd.paramsd", only_onroad),
PythonProcess("lagd", "selfdrive.locationd.lagd", only_onroad),
NativeProcess("ubloxd", "system/ubloxd", ["./ubloxd"], ublox, enabled=TICI),
PythonProcess("ubloxd", "system.ubloxd.ubloxd", ublox, enabled=TICI),
PythonProcess("pigeond", "system.ubloxd.pigeond", ublox, enabled=TICI),
PythonProcess("plannerd", "selfdrive.controls.plannerd", not_long_maneuver),
PythonProcess("maneuversd", "tools.longitudinal_maneuvers.maneuversd", long_maneuver),

@ -1,2 +0,0 @@
ubloxd
tests/test_glonass_runner

@ -1,20 +1,10 @@
Import('env', 'common', 'messaging')
loc_libs = [messaging, common, 'kaitai', 'pthread']
Import('env')
# TODO: look into this
# kaitai issue: https://github.com/kaitai-io/kaitai_struct/issues/910
if GetOption('kaitai'):
generated = Dir('generated').srcnode().abspath
cmd = f"kaitai-struct-compiler --target cpp_stl --outdir {generated} $SOURCES"
env.Command(['generated/ubx.cpp', 'generated/ubx.h'], 'ubx.ksy', cmd)
env.Command(['generated/gps.cpp', 'generated/gps.h'], 'gps.ksy', cmd)
glonass = env.Command(['generated/glonass.cpp', 'generated/glonass.h'], 'glonass.ksy', cmd)
# kaitai issue: https://github.com/kaitai-io/kaitai_struct/issues/910
patch = env.Command(None, 'glonass_fix.patch', 'git apply $SOURCES')
env.Depends(patch, glonass)
glonass_obj = env.Object('generated/glonass.cpp')
env.Program("ubloxd", ["ubloxd.cc", "ublox_msg.cc", "generated/ubx.cpp", "generated/gps.cpp", glonass_obj], LIBS=loc_libs)
if GetOption('extras'):
env.Program("tests/test_glonass_runner", ['tests/test_glonass_runner.cc', 'tests/test_glonass_kaitai.cc', glonass_obj], LIBS=[loc_libs])
current_dir = Dir('./generated/').srcnode().abspath
python_cmd = f"kaitai-struct-compiler --target python --outdir {current_dir} $SOURCES"
env.Command(File('./generated/ubx.py'), 'ubx.ksy', python_cmd)
env.Command(File('./generated/gps.py'), 'gps.ksy', python_cmd)
env.Command(File('./generated/glonass.py'), 'glonass.ksy', python_cmd)

@ -1,353 +0,0 @@
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "glonass.h"
glonass_t::glonass_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::_read() {
m_idle_chip = m__io->read_bits_int_be(1);
m_string_number = m__io->read_bits_int_be(4);
//m__io->align_to_byte();
switch (string_number()) {
case 4: {
m_data = new string_4_t(m__io, this, m__root);
break;
}
case 1: {
m_data = new string_1_t(m__io, this, m__root);
break;
}
case 3: {
m_data = new string_3_t(m__io, this, m__root);
break;
}
case 5: {
m_data = new string_5_t(m__io, this, m__root);
break;
}
case 2: {
m_data = new string_2_t(m__io, this, m__root);
break;
}
default: {
m_data = new string_non_immediate_t(m__io, this, m__root);
break;
}
}
m_hamming_code = m__io->read_bits_int_be(8);
m_pad_1 = m__io->read_bits_int_be(11);
m_superframe_number = m__io->read_bits_int_be(16);
m_pad_2 = m__io->read_bits_int_be(8);
m_frame_number = m__io->read_bits_int_be(8);
}
glonass_t::~glonass_t() {
_clean_up();
}
void glonass_t::_clean_up() {
if (m_data) {
delete m_data; m_data = 0;
}
}
glonass_t::string_4_t::string_4_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_tau_n = false;
f_delta_tau_n = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_4_t::_read() {
m_tau_n_sign = m__io->read_bits_int_be(1);
m_tau_n_value = m__io->read_bits_int_be(21);
m_delta_tau_n_sign = m__io->read_bits_int_be(1);
m_delta_tau_n_value = m__io->read_bits_int_be(4);
m_e_n = m__io->read_bits_int_be(5);
m_not_used_1 = m__io->read_bits_int_be(14);
m_p4 = m__io->read_bits_int_be(1);
m_f_t = m__io->read_bits_int_be(4);
m_not_used_2 = m__io->read_bits_int_be(3);
m_n_t = m__io->read_bits_int_be(11);
m_n = m__io->read_bits_int_be(5);
m_m = m__io->read_bits_int_be(2);
}
glonass_t::string_4_t::~string_4_t() {
_clean_up();
}
void glonass_t::string_4_t::_clean_up() {
}
int32_t glonass_t::string_4_t::tau_n() {
if (f_tau_n)
return m_tau_n;
m_tau_n = ((tau_n_sign()) ? ((tau_n_value() * -1)) : (tau_n_value()));
f_tau_n = true;
return m_tau_n;
}
int32_t glonass_t::string_4_t::delta_tau_n() {
if (f_delta_tau_n)
return m_delta_tau_n;
m_delta_tau_n = ((delta_tau_n_sign()) ? ((delta_tau_n_value() * -1)) : (delta_tau_n_value()));
f_delta_tau_n = true;
return m_delta_tau_n;
}
glonass_t::string_non_immediate_t::string_non_immediate_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_non_immediate_t::_read() {
m_data_1 = m__io->read_bits_int_be(64);
m_data_2 = m__io->read_bits_int_be(8);
}
glonass_t::string_non_immediate_t::~string_non_immediate_t() {
_clean_up();
}
void glonass_t::string_non_immediate_t::_clean_up() {
}
glonass_t::string_5_t::string_5_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_5_t::_read() {
m_n_a = m__io->read_bits_int_be(11);
m_tau_c = m__io->read_bits_int_be(32);
m_not_used = m__io->read_bits_int_be(1);
m_n_4 = m__io->read_bits_int_be(5);
m_tau_gps = m__io->read_bits_int_be(22);
m_l_n = m__io->read_bits_int_be(1);
}
glonass_t::string_5_t::~string_5_t() {
_clean_up();
}
void glonass_t::string_5_t::_clean_up() {
}
glonass_t::string_1_t::string_1_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_x_vel = false;
f_x_accel = false;
f_x = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_1_t::_read() {
m_not_used = m__io->read_bits_int_be(2);
m_p1 = m__io->read_bits_int_be(2);
m_t_k = m__io->read_bits_int_be(12);
m_x_vel_sign = m__io->read_bits_int_be(1);
m_x_vel_value = m__io->read_bits_int_be(23);
m_x_accel_sign = m__io->read_bits_int_be(1);
m_x_accel_value = m__io->read_bits_int_be(4);
m_x_sign = m__io->read_bits_int_be(1);
m_x_value = m__io->read_bits_int_be(26);
}
glonass_t::string_1_t::~string_1_t() {
_clean_up();
}
void glonass_t::string_1_t::_clean_up() {
}
int32_t glonass_t::string_1_t::x_vel() {
if (f_x_vel)
return m_x_vel;
m_x_vel = ((x_vel_sign()) ? ((x_vel_value() * -1)) : (x_vel_value()));
f_x_vel = true;
return m_x_vel;
}
int32_t glonass_t::string_1_t::x_accel() {
if (f_x_accel)
return m_x_accel;
m_x_accel = ((x_accel_sign()) ? ((x_accel_value() * -1)) : (x_accel_value()));
f_x_accel = true;
return m_x_accel;
}
int32_t glonass_t::string_1_t::x() {
if (f_x)
return m_x;
m_x = ((x_sign()) ? ((x_value() * -1)) : (x_value()));
f_x = true;
return m_x;
}
glonass_t::string_2_t::string_2_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_y_vel = false;
f_y_accel = false;
f_y = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_2_t::_read() {
m_b_n = m__io->read_bits_int_be(3);
m_p2 = m__io->read_bits_int_be(1);
m_t_b = m__io->read_bits_int_be(7);
m_not_used = m__io->read_bits_int_be(5);
m_y_vel_sign = m__io->read_bits_int_be(1);
m_y_vel_value = m__io->read_bits_int_be(23);
m_y_accel_sign = m__io->read_bits_int_be(1);
m_y_accel_value = m__io->read_bits_int_be(4);
m_y_sign = m__io->read_bits_int_be(1);
m_y_value = m__io->read_bits_int_be(26);
}
glonass_t::string_2_t::~string_2_t() {
_clean_up();
}
void glonass_t::string_2_t::_clean_up() {
}
int32_t glonass_t::string_2_t::y_vel() {
if (f_y_vel)
return m_y_vel;
m_y_vel = ((y_vel_sign()) ? ((y_vel_value() * -1)) : (y_vel_value()));
f_y_vel = true;
return m_y_vel;
}
int32_t glonass_t::string_2_t::y_accel() {
if (f_y_accel)
return m_y_accel;
m_y_accel = ((y_accel_sign()) ? ((y_accel_value() * -1)) : (y_accel_value()));
f_y_accel = true;
return m_y_accel;
}
int32_t glonass_t::string_2_t::y() {
if (f_y)
return m_y;
m_y = ((y_sign()) ? ((y_value() * -1)) : (y_value()));
f_y = true;
return m_y;
}
glonass_t::string_3_t::string_3_t(kaitai::kstream* p__io, glonass_t* p__parent, glonass_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_gamma_n = false;
f_z_vel = false;
f_z_accel = false;
f_z = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void glonass_t::string_3_t::_read() {
m_p3 = m__io->read_bits_int_be(1);
m_gamma_n_sign = m__io->read_bits_int_be(1);
m_gamma_n_value = m__io->read_bits_int_be(10);
m_not_used = m__io->read_bits_int_be(1);
m_p = m__io->read_bits_int_be(2);
m_l_n = m__io->read_bits_int_be(1);
m_z_vel_sign = m__io->read_bits_int_be(1);
m_z_vel_value = m__io->read_bits_int_be(23);
m_z_accel_sign = m__io->read_bits_int_be(1);
m_z_accel_value = m__io->read_bits_int_be(4);
m_z_sign = m__io->read_bits_int_be(1);
m_z_value = m__io->read_bits_int_be(26);
}
glonass_t::string_3_t::~string_3_t() {
_clean_up();
}
void glonass_t::string_3_t::_clean_up() {
}
int32_t glonass_t::string_3_t::gamma_n() {
if (f_gamma_n)
return m_gamma_n;
m_gamma_n = ((gamma_n_sign()) ? ((gamma_n_value() * -1)) : (gamma_n_value()));
f_gamma_n = true;
return m_gamma_n;
}
int32_t glonass_t::string_3_t::z_vel() {
if (f_z_vel)
return m_z_vel;
m_z_vel = ((z_vel_sign()) ? ((z_vel_value() * -1)) : (z_vel_value()));
f_z_vel = true;
return m_z_vel;
}
int32_t glonass_t::string_3_t::z_accel() {
if (f_z_accel)
return m_z_accel;
m_z_accel = ((z_accel_sign()) ? ((z_accel_value() * -1)) : (z_accel_value()));
f_z_accel = true;
return m_z_accel;
}
int32_t glonass_t::string_3_t::z() {
if (f_z)
return m_z;
m_z = ((z_sign()) ? ((z_value() * -1)) : (z_value()));
f_z = true;
return m_z;
}

@ -1,375 +0,0 @@
#ifndef GLONASS_H_
#define GLONASS_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class glonass_t : public kaitai::kstruct {
public:
class string_4_t;
class string_non_immediate_t;
class string_5_t;
class string_1_t;
class string_2_t;
class string_3_t;
glonass_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~glonass_t();
class string_4_t : public kaitai::kstruct {
public:
string_4_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_4_t();
private:
bool f_tau_n;
int32_t m_tau_n;
public:
int32_t tau_n();
private:
bool f_delta_tau_n;
int32_t m_delta_tau_n;
public:
int32_t delta_tau_n();
private:
bool m_tau_n_sign;
uint64_t m_tau_n_value;
bool m_delta_tau_n_sign;
uint64_t m_delta_tau_n_value;
uint64_t m_e_n;
uint64_t m_not_used_1;
bool m_p4;
uint64_t m_f_t;
uint64_t m_not_used_2;
uint64_t m_n_t;
uint64_t m_n;
uint64_t m_m;
glonass_t* m__root;
glonass_t* m__parent;
public:
bool tau_n_sign() const { return m_tau_n_sign; }
uint64_t tau_n_value() const { return m_tau_n_value; }
bool delta_tau_n_sign() const { return m_delta_tau_n_sign; }
uint64_t delta_tau_n_value() const { return m_delta_tau_n_value; }
uint64_t e_n() const { return m_e_n; }
uint64_t not_used_1() const { return m_not_used_1; }
bool p4() const { return m_p4; }
uint64_t f_t() const { return m_f_t; }
uint64_t not_used_2() const { return m_not_used_2; }
uint64_t n_t() const { return m_n_t; }
uint64_t n() const { return m_n; }
uint64_t m() const { return m_m; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
class string_non_immediate_t : public kaitai::kstruct {
public:
string_non_immediate_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_non_immediate_t();
private:
uint64_t m_data_1;
uint64_t m_data_2;
glonass_t* m__root;
glonass_t* m__parent;
public:
uint64_t data_1() const { return m_data_1; }
uint64_t data_2() const { return m_data_2; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
class string_5_t : public kaitai::kstruct {
public:
string_5_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_5_t();
private:
uint64_t m_n_a;
uint64_t m_tau_c;
bool m_not_used;
uint64_t m_n_4;
uint64_t m_tau_gps;
bool m_l_n;
glonass_t* m__root;
glonass_t* m__parent;
public:
uint64_t n_a() const { return m_n_a; }
uint64_t tau_c() const { return m_tau_c; }
bool not_used() const { return m_not_used; }
uint64_t n_4() const { return m_n_4; }
uint64_t tau_gps() const { return m_tau_gps; }
bool l_n() const { return m_l_n; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
class string_1_t : public kaitai::kstruct {
public:
string_1_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_1_t();
private:
bool f_x_vel;
int32_t m_x_vel;
public:
int32_t x_vel();
private:
bool f_x_accel;
int32_t m_x_accel;
public:
int32_t x_accel();
private:
bool f_x;
int32_t m_x;
public:
int32_t x();
private:
uint64_t m_not_used;
uint64_t m_p1;
uint64_t m_t_k;
bool m_x_vel_sign;
uint64_t m_x_vel_value;
bool m_x_accel_sign;
uint64_t m_x_accel_value;
bool m_x_sign;
uint64_t m_x_value;
glonass_t* m__root;
glonass_t* m__parent;
public:
uint64_t not_used() const { return m_not_used; }
uint64_t p1() const { return m_p1; }
uint64_t t_k() const { return m_t_k; }
bool x_vel_sign() const { return m_x_vel_sign; }
uint64_t x_vel_value() const { return m_x_vel_value; }
bool x_accel_sign() const { return m_x_accel_sign; }
uint64_t x_accel_value() const { return m_x_accel_value; }
bool x_sign() const { return m_x_sign; }
uint64_t x_value() const { return m_x_value; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
class string_2_t : public kaitai::kstruct {
public:
string_2_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_2_t();
private:
bool f_y_vel;
int32_t m_y_vel;
public:
int32_t y_vel();
private:
bool f_y_accel;
int32_t m_y_accel;
public:
int32_t y_accel();
private:
bool f_y;
int32_t m_y;
public:
int32_t y();
private:
uint64_t m_b_n;
bool m_p2;
uint64_t m_t_b;
uint64_t m_not_used;
bool m_y_vel_sign;
uint64_t m_y_vel_value;
bool m_y_accel_sign;
uint64_t m_y_accel_value;
bool m_y_sign;
uint64_t m_y_value;
glonass_t* m__root;
glonass_t* m__parent;
public:
uint64_t b_n() const { return m_b_n; }
bool p2() const { return m_p2; }
uint64_t t_b() const { return m_t_b; }
uint64_t not_used() const { return m_not_used; }
bool y_vel_sign() const { return m_y_vel_sign; }
uint64_t y_vel_value() const { return m_y_vel_value; }
bool y_accel_sign() const { return m_y_accel_sign; }
uint64_t y_accel_value() const { return m_y_accel_value; }
bool y_sign() const { return m_y_sign; }
uint64_t y_value() const { return m_y_value; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
class string_3_t : public kaitai::kstruct {
public:
string_3_t(kaitai::kstream* p__io, glonass_t* p__parent = 0, glonass_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~string_3_t();
private:
bool f_gamma_n;
int32_t m_gamma_n;
public:
int32_t gamma_n();
private:
bool f_z_vel;
int32_t m_z_vel;
public:
int32_t z_vel();
private:
bool f_z_accel;
int32_t m_z_accel;
public:
int32_t z_accel();
private:
bool f_z;
int32_t m_z;
public:
int32_t z();
private:
bool m_p3;
bool m_gamma_n_sign;
uint64_t m_gamma_n_value;
bool m_not_used;
uint64_t m_p;
bool m_l_n;
bool m_z_vel_sign;
uint64_t m_z_vel_value;
bool m_z_accel_sign;
uint64_t m_z_accel_value;
bool m_z_sign;
uint64_t m_z_value;
glonass_t* m__root;
glonass_t* m__parent;
public:
bool p3() const { return m_p3; }
bool gamma_n_sign() const { return m_gamma_n_sign; }
uint64_t gamma_n_value() const { return m_gamma_n_value; }
bool not_used() const { return m_not_used; }
uint64_t p() const { return m_p; }
bool l_n() const { return m_l_n; }
bool z_vel_sign() const { return m_z_vel_sign; }
uint64_t z_vel_value() const { return m_z_vel_value; }
bool z_accel_sign() const { return m_z_accel_sign; }
uint64_t z_accel_value() const { return m_z_accel_value; }
bool z_sign() const { return m_z_sign; }
uint64_t z_value() const { return m_z_value; }
glonass_t* _root() const { return m__root; }
glonass_t* _parent() const { return m__parent; }
};
private:
bool m_idle_chip;
uint64_t m_string_number;
kaitai::kstruct* m_data;
uint64_t m_hamming_code;
uint64_t m_pad_1;
uint64_t m_superframe_number;
uint64_t m_pad_2;
uint64_t m_frame_number;
glonass_t* m__root;
kaitai::kstruct* m__parent;
public:
bool idle_chip() const { return m_idle_chip; }
uint64_t string_number() const { return m_string_number; }
kaitai::kstruct* data() const { return m_data; }
uint64_t hamming_code() const { return m_hamming_code; }
uint64_t pad_1() const { return m_pad_1; }
uint64_t superframe_number() const { return m_superframe_number; }
uint64_t pad_2() const { return m_pad_2; }
uint64_t frame_number() const { return m_frame_number; }
glonass_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // GLONASS_H_

@ -0,0 +1,247 @@
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO
if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 9):
raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__))
class Glonass(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.idle_chip = self._io.read_bits_int_be(1) != 0
self.string_number = self._io.read_bits_int_be(4)
self._io.align_to_byte()
_on = self.string_number
if _on == 4:
self.data = Glonass.String4(self._io, self, self._root)
elif _on == 1:
self.data = Glonass.String1(self._io, self, self._root)
elif _on == 3:
self.data = Glonass.String3(self._io, self, self._root)
elif _on == 5:
self.data = Glonass.String5(self._io, self, self._root)
elif _on == 2:
self.data = Glonass.String2(self._io, self, self._root)
else:
self.data = Glonass.StringNonImmediate(self._io, self, self._root)
self.hamming_code = self._io.read_bits_int_be(8)
self.pad_1 = self._io.read_bits_int_be(11)
self.superframe_number = self._io.read_bits_int_be(16)
self.pad_2 = self._io.read_bits_int_be(8)
self.frame_number = self._io.read_bits_int_be(8)
class String4(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.tau_n_sign = self._io.read_bits_int_be(1) != 0
self.tau_n_value = self._io.read_bits_int_be(21)
self.delta_tau_n_sign = self._io.read_bits_int_be(1) != 0
self.delta_tau_n_value = self._io.read_bits_int_be(4)
self.e_n = self._io.read_bits_int_be(5)
self.not_used_1 = self._io.read_bits_int_be(14)
self.p4 = self._io.read_bits_int_be(1) != 0
self.f_t = self._io.read_bits_int_be(4)
self.not_used_2 = self._io.read_bits_int_be(3)
self.n_t = self._io.read_bits_int_be(11)
self.n = self._io.read_bits_int_be(5)
self.m = self._io.read_bits_int_be(2)
@property
def tau_n(self):
if hasattr(self, '_m_tau_n'):
return self._m_tau_n
self._m_tau_n = ((self.tau_n_value * -1) if self.tau_n_sign else self.tau_n_value)
return getattr(self, '_m_tau_n', None)
@property
def delta_tau_n(self):
if hasattr(self, '_m_delta_tau_n'):
return self._m_delta_tau_n
self._m_delta_tau_n = ((self.delta_tau_n_value * -1) if self.delta_tau_n_sign else self.delta_tau_n_value)
return getattr(self, '_m_delta_tau_n', None)
class StringNonImmediate(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.data_1 = self._io.read_bits_int_be(64)
self.data_2 = self._io.read_bits_int_be(8)
class String5(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.n_a = self._io.read_bits_int_be(11)
self.tau_c = self._io.read_bits_int_be(32)
self.not_used = self._io.read_bits_int_be(1) != 0
self.n_4 = self._io.read_bits_int_be(5)
self.tau_gps = self._io.read_bits_int_be(22)
self.l_n = self._io.read_bits_int_be(1) != 0
class String1(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.not_used = self._io.read_bits_int_be(2)
self.p1 = self._io.read_bits_int_be(2)
self.t_k = self._io.read_bits_int_be(12)
self.x_vel_sign = self._io.read_bits_int_be(1) != 0
self.x_vel_value = self._io.read_bits_int_be(23)
self.x_accel_sign = self._io.read_bits_int_be(1) != 0
self.x_accel_value = self._io.read_bits_int_be(4)
self.x_sign = self._io.read_bits_int_be(1) != 0
self.x_value = self._io.read_bits_int_be(26)
@property
def x_vel(self):
if hasattr(self, '_m_x_vel'):
return self._m_x_vel
self._m_x_vel = ((self.x_vel_value * -1) if self.x_vel_sign else self.x_vel_value)
return getattr(self, '_m_x_vel', None)
@property
def x_accel(self):
if hasattr(self, '_m_x_accel'):
return self._m_x_accel
self._m_x_accel = ((self.x_accel_value * -1) if self.x_accel_sign else self.x_accel_value)
return getattr(self, '_m_x_accel', None)
@property
def x(self):
if hasattr(self, '_m_x'):
return self._m_x
self._m_x = ((self.x_value * -1) if self.x_sign else self.x_value)
return getattr(self, '_m_x', None)
class String2(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.b_n = self._io.read_bits_int_be(3)
self.p2 = self._io.read_bits_int_be(1) != 0
self.t_b = self._io.read_bits_int_be(7)
self.not_used = self._io.read_bits_int_be(5)
self.y_vel_sign = self._io.read_bits_int_be(1) != 0
self.y_vel_value = self._io.read_bits_int_be(23)
self.y_accel_sign = self._io.read_bits_int_be(1) != 0
self.y_accel_value = self._io.read_bits_int_be(4)
self.y_sign = self._io.read_bits_int_be(1) != 0
self.y_value = self._io.read_bits_int_be(26)
@property
def y_vel(self):
if hasattr(self, '_m_y_vel'):
return self._m_y_vel
self._m_y_vel = ((self.y_vel_value * -1) if self.y_vel_sign else self.y_vel_value)
return getattr(self, '_m_y_vel', None)
@property
def y_accel(self):
if hasattr(self, '_m_y_accel'):
return self._m_y_accel
self._m_y_accel = ((self.y_accel_value * -1) if self.y_accel_sign else self.y_accel_value)
return getattr(self, '_m_y_accel', None)
@property
def y(self):
if hasattr(self, '_m_y'):
return self._m_y
self._m_y = ((self.y_value * -1) if self.y_sign else self.y_value)
return getattr(self, '_m_y', None)
class String3(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.p3 = self._io.read_bits_int_be(1) != 0
self.gamma_n_sign = self._io.read_bits_int_be(1) != 0
self.gamma_n_value = self._io.read_bits_int_be(10)
self.not_used = self._io.read_bits_int_be(1) != 0
self.p = self._io.read_bits_int_be(2)
self.l_n = self._io.read_bits_int_be(1) != 0
self.z_vel_sign = self._io.read_bits_int_be(1) != 0
self.z_vel_value = self._io.read_bits_int_be(23)
self.z_accel_sign = self._io.read_bits_int_be(1) != 0
self.z_accel_value = self._io.read_bits_int_be(4)
self.z_sign = self._io.read_bits_int_be(1) != 0
self.z_value = self._io.read_bits_int_be(26)
@property
def gamma_n(self):
if hasattr(self, '_m_gamma_n'):
return self._m_gamma_n
self._m_gamma_n = ((self.gamma_n_value * -1) if self.gamma_n_sign else self.gamma_n_value)
return getattr(self, '_m_gamma_n', None)
@property
def z_vel(self):
if hasattr(self, '_m_z_vel'):
return self._m_z_vel
self._m_z_vel = ((self.z_vel_value * -1) if self.z_vel_sign else self.z_vel_value)
return getattr(self, '_m_z_vel', None)
@property
def z_accel(self):
if hasattr(self, '_m_z_accel'):
return self._m_z_accel
self._m_z_accel = ((self.z_accel_value * -1) if self.z_accel_sign else self.z_accel_value)
return getattr(self, '_m_z_accel', None)
@property
def z(self):
if hasattr(self, '_m_z'):
return self._m_z
self._m_z = ((self.z_value * -1) if self.z_sign else self.z_value)
return getattr(self, '_m_z', None)

@ -1,325 +0,0 @@
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "gps.h"
#include "kaitai/exceptions.h"
gps_t::gps_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
m_tlm = 0;
m_how = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::_read() {
m_tlm = new tlm_t(m__io, this, m__root);
m_how = new how_t(m__io, this, m__root);
n_body = true;
switch (how()->subframe_id()) {
case 1: {
n_body = false;
m_body = new subframe_1_t(m__io, this, m__root);
break;
}
case 2: {
n_body = false;
m_body = new subframe_2_t(m__io, this, m__root);
break;
}
case 3: {
n_body = false;
m_body = new subframe_3_t(m__io, this, m__root);
break;
}
case 4: {
n_body = false;
m_body = new subframe_4_t(m__io, this, m__root);
break;
}
}
}
gps_t::~gps_t() {
_clean_up();
}
void gps_t::_clean_up() {
if (m_tlm) {
delete m_tlm; m_tlm = 0;
}
if (m_how) {
delete m_how; m_how = 0;
}
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
}
gps_t::subframe_1_t::subframe_1_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_af_0 = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_1_t::_read() {
m_week_no = m__io->read_bits_int_be(10);
m_code = m__io->read_bits_int_be(2);
m_sv_accuracy = m__io->read_bits_int_be(4);
m_sv_health = m__io->read_bits_int_be(6);
m_iodc_msb = m__io->read_bits_int_be(2);
m_l2_p_data_flag = m__io->read_bits_int_be(1);
m_reserved1 = m__io->read_bits_int_be(23);
m_reserved2 = m__io->read_bits_int_be(24);
m_reserved3 = m__io->read_bits_int_be(24);
m_reserved4 = m__io->read_bits_int_be(16);
m__io->align_to_byte();
m_t_gd = m__io->read_s1();
m_iodc_lsb = m__io->read_u1();
m_t_oc = m__io->read_u2be();
m_af_2 = m__io->read_s1();
m_af_1 = m__io->read_s2be();
m_af_0_sign = m__io->read_bits_int_be(1);
m_af_0_value = m__io->read_bits_int_be(21);
m_reserved5 = m__io->read_bits_int_be(2);
}
gps_t::subframe_1_t::~subframe_1_t() {
_clean_up();
}
void gps_t::subframe_1_t::_clean_up() {
}
int32_t gps_t::subframe_1_t::af_0() {
if (f_af_0)
return m_af_0;
m_af_0 = ((af_0_sign()) ? ((af_0_value() - (1 << 21))) : (af_0_value()));
f_af_0 = true;
return m_af_0;
}
gps_t::subframe_3_t::subframe_3_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
f_omega_dot = false;
f_idot = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_3_t::_read() {
m_c_ic = m__io->read_s2be();
m_omega_0 = m__io->read_s4be();
m_c_is = m__io->read_s2be();
m_i_0 = m__io->read_s4be();
m_c_rc = m__io->read_s2be();
m_omega = m__io->read_s4be();
m_omega_dot_sign = m__io->read_bits_int_be(1);
m_omega_dot_value = m__io->read_bits_int_be(23);
m__io->align_to_byte();
m_iode = m__io->read_u1();
m_idot_sign = m__io->read_bits_int_be(1);
m_idot_value = m__io->read_bits_int_be(13);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::subframe_3_t::~subframe_3_t() {
_clean_up();
}
void gps_t::subframe_3_t::_clean_up() {
}
int32_t gps_t::subframe_3_t::omega_dot() {
if (f_omega_dot)
return m_omega_dot;
m_omega_dot = ((omega_dot_sign()) ? ((omega_dot_value() - (1 << 23))) : (omega_dot_value()));
f_omega_dot = true;
return m_omega_dot;
}
int32_t gps_t::subframe_3_t::idot() {
if (f_idot)
return m_idot;
m_idot = ((idot_sign()) ? ((idot_value() - (1 << 13))) : (idot_value()));
f_idot = true;
return m_idot;
}
gps_t::subframe_4_t::subframe_4_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_4_t::_read() {
m_data_id = m__io->read_bits_int_be(2);
m_page_id = m__io->read_bits_int_be(6);
m__io->align_to_byte();
n_body = true;
switch (page_id()) {
case 56: {
n_body = false;
m_body = new ionosphere_data_t(m__io, this, m__root);
break;
}
}
}
gps_t::subframe_4_t::~subframe_4_t() {
_clean_up();
}
void gps_t::subframe_4_t::_clean_up() {
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
}
gps_t::subframe_4_t::ionosphere_data_t::ionosphere_data_t(kaitai::kstream* p__io, gps_t::subframe_4_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_4_t::ionosphere_data_t::_read() {
m_a0 = m__io->read_s1();
m_a1 = m__io->read_s1();
m_a2 = m__io->read_s1();
m_a3 = m__io->read_s1();
m_b0 = m__io->read_s1();
m_b1 = m__io->read_s1();
m_b2 = m__io->read_s1();
m_b3 = m__io->read_s1();
}
gps_t::subframe_4_t::ionosphere_data_t::~ionosphere_data_t() {
_clean_up();
}
void gps_t::subframe_4_t::ionosphere_data_t::_clean_up() {
}
gps_t::how_t::how_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::how_t::_read() {
m_tow_count = m__io->read_bits_int_be(17);
m_alert = m__io->read_bits_int_be(1);
m_anti_spoof = m__io->read_bits_int_be(1);
m_subframe_id = m__io->read_bits_int_be(3);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::how_t::~how_t() {
_clean_up();
}
void gps_t::how_t::_clean_up() {
}
gps_t::tlm_t::tlm_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::tlm_t::_read() {
m_preamble = m__io->read_bytes(1);
if (!(preamble() == std::string("\x8B", 1))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\x8B", 1), preamble(), _io(), std::string("/types/tlm/seq/0"));
}
m_tlm = m__io->read_bits_int_be(14);
m_integrity_status = m__io->read_bits_int_be(1);
m_reserved = m__io->read_bits_int_be(1);
}
gps_t::tlm_t::~tlm_t() {
_clean_up();
}
void gps_t::tlm_t::_clean_up() {
}
gps_t::subframe_2_t::subframe_2_t(kaitai::kstream* p__io, gps_t* p__parent, gps_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void gps_t::subframe_2_t::_read() {
m_iode = m__io->read_u1();
m_c_rs = m__io->read_s2be();
m_delta_n = m__io->read_s2be();
m_m_0 = m__io->read_s4be();
m_c_uc = m__io->read_s2be();
m_e = m__io->read_s4be();
m_c_us = m__io->read_s2be();
m_sqrt_a = m__io->read_u4be();
m_t_oe = m__io->read_u2be();
m_fit_interval_flag = m__io->read_bits_int_be(1);
m_aoda = m__io->read_bits_int_be(5);
m_reserved = m__io->read_bits_int_be(2);
}
gps_t::subframe_2_t::~subframe_2_t() {
_clean_up();
}
void gps_t::subframe_2_t::_clean_up() {
}

@ -1,359 +0,0 @@
#ifndef GPS_H_
#define GPS_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class gps_t : public kaitai::kstruct {
public:
class subframe_1_t;
class subframe_3_t;
class subframe_4_t;
class how_t;
class tlm_t;
class subframe_2_t;
gps_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~gps_t();
class subframe_1_t : public kaitai::kstruct {
public:
subframe_1_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_1_t();
private:
bool f_af_0;
int32_t m_af_0;
public:
int32_t af_0();
private:
uint64_t m_week_no;
uint64_t m_code;
uint64_t m_sv_accuracy;
uint64_t m_sv_health;
uint64_t m_iodc_msb;
bool m_l2_p_data_flag;
uint64_t m_reserved1;
uint64_t m_reserved2;
uint64_t m_reserved3;
uint64_t m_reserved4;
int8_t m_t_gd;
uint8_t m_iodc_lsb;
uint16_t m_t_oc;
int8_t m_af_2;
int16_t m_af_1;
bool m_af_0_sign;
uint64_t m_af_0_value;
uint64_t m_reserved5;
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t week_no() const { return m_week_no; }
uint64_t code() const { return m_code; }
uint64_t sv_accuracy() const { return m_sv_accuracy; }
uint64_t sv_health() const { return m_sv_health; }
uint64_t iodc_msb() const { return m_iodc_msb; }
bool l2_p_data_flag() const { return m_l2_p_data_flag; }
uint64_t reserved1() const { return m_reserved1; }
uint64_t reserved2() const { return m_reserved2; }
uint64_t reserved3() const { return m_reserved3; }
uint64_t reserved4() const { return m_reserved4; }
int8_t t_gd() const { return m_t_gd; }
uint8_t iodc_lsb() const { return m_iodc_lsb; }
uint16_t t_oc() const { return m_t_oc; }
int8_t af_2() const { return m_af_2; }
int16_t af_1() const { return m_af_1; }
bool af_0_sign() const { return m_af_0_sign; }
uint64_t af_0_value() const { return m_af_0_value; }
uint64_t reserved5() const { return m_reserved5; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_3_t : public kaitai::kstruct {
public:
subframe_3_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_3_t();
private:
bool f_omega_dot;
int32_t m_omega_dot;
public:
int32_t omega_dot();
private:
bool f_idot;
int32_t m_idot;
public:
int32_t idot();
private:
int16_t m_c_ic;
int32_t m_omega_0;
int16_t m_c_is;
int32_t m_i_0;
int16_t m_c_rc;
int32_t m_omega;
bool m_omega_dot_sign;
uint64_t m_omega_dot_value;
uint8_t m_iode;
bool m_idot_sign;
uint64_t m_idot_value;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
int16_t c_ic() const { return m_c_ic; }
int32_t omega_0() const { return m_omega_0; }
int16_t c_is() const { return m_c_is; }
int32_t i_0() const { return m_i_0; }
int16_t c_rc() const { return m_c_rc; }
int32_t omega() const { return m_omega; }
bool omega_dot_sign() const { return m_omega_dot_sign; }
uint64_t omega_dot_value() const { return m_omega_dot_value; }
uint8_t iode() const { return m_iode; }
bool idot_sign() const { return m_idot_sign; }
uint64_t idot_value() const { return m_idot_value; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_4_t : public kaitai::kstruct {
public:
class ionosphere_data_t;
subframe_4_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_4_t();
class ionosphere_data_t : public kaitai::kstruct {
public:
ionosphere_data_t(kaitai::kstream* p__io, gps_t::subframe_4_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~ionosphere_data_t();
private:
int8_t m_a0;
int8_t m_a1;
int8_t m_a2;
int8_t m_a3;
int8_t m_b0;
int8_t m_b1;
int8_t m_b2;
int8_t m_b3;
gps_t* m__root;
gps_t::subframe_4_t* m__parent;
public:
int8_t a0() const { return m_a0; }
int8_t a1() const { return m_a1; }
int8_t a2() const { return m_a2; }
int8_t a3() const { return m_a3; }
int8_t b0() const { return m_b0; }
int8_t b1() const { return m_b1; }
int8_t b2() const { return m_b2; }
int8_t b3() const { return m_b3; }
gps_t* _root() const { return m__root; }
gps_t::subframe_4_t* _parent() const { return m__parent; }
};
private:
uint64_t m_data_id;
uint64_t m_page_id;
ionosphere_data_t* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t data_id() const { return m_data_id; }
uint64_t page_id() const { return m_page_id; }
ionosphere_data_t* body() const { return m_body; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class how_t : public kaitai::kstruct {
public:
how_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~how_t();
private:
uint64_t m_tow_count;
bool m_alert;
bool m_anti_spoof;
uint64_t m_subframe_id;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
uint64_t tow_count() const { return m_tow_count; }
bool alert() const { return m_alert; }
bool anti_spoof() const { return m_anti_spoof; }
uint64_t subframe_id() const { return m_subframe_id; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class tlm_t : public kaitai::kstruct {
public:
tlm_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~tlm_t();
private:
std::string m_preamble;
uint64_t m_tlm;
bool m_integrity_status;
bool m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
std::string preamble() const { return m_preamble; }
uint64_t tlm() const { return m_tlm; }
bool integrity_status() const { return m_integrity_status; }
bool reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
class subframe_2_t : public kaitai::kstruct {
public:
subframe_2_t(kaitai::kstream* p__io, gps_t* p__parent = 0, gps_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~subframe_2_t();
private:
uint8_t m_iode;
int16_t m_c_rs;
int16_t m_delta_n;
int32_t m_m_0;
int16_t m_c_uc;
int32_t m_e;
int16_t m_c_us;
uint32_t m_sqrt_a;
uint16_t m_t_oe;
bool m_fit_interval_flag;
uint64_t m_aoda;
uint64_t m_reserved;
gps_t* m__root;
gps_t* m__parent;
public:
uint8_t iode() const { return m_iode; }
int16_t c_rs() const { return m_c_rs; }
int16_t delta_n() const { return m_delta_n; }
int32_t m_0() const { return m_m_0; }
int16_t c_uc() const { return m_c_uc; }
int32_t e() const { return m_e; }
int16_t c_us() const { return m_c_us; }
uint32_t sqrt_a() const { return m_sqrt_a; }
uint16_t t_oe() const { return m_t_oe; }
bool fit_interval_flag() const { return m_fit_interval_flag; }
uint64_t aoda() const { return m_aoda; }
uint64_t reserved() const { return m_reserved; }
gps_t* _root() const { return m__root; }
gps_t* _parent() const { return m__parent; }
};
private:
tlm_t* m_tlm;
how_t* m_how;
kaitai::kstruct* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
gps_t* m__root;
kaitai::kstruct* m__parent;
public:
tlm_t* tlm() const { return m_tlm; }
how_t* how() const { return m_how; }
kaitai::kstruct* body() const { return m_body; }
gps_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // GPS_H_

@ -0,0 +1,193 @@
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO
if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 9):
raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__))
class Gps(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.tlm = Gps.Tlm(self._io, self, self._root)
self.how = Gps.How(self._io, self, self._root)
_on = self.how.subframe_id
if _on == 1:
self.body = Gps.Subframe1(self._io, self, self._root)
elif _on == 2:
self.body = Gps.Subframe2(self._io, self, self._root)
elif _on == 3:
self.body = Gps.Subframe3(self._io, self, self._root)
elif _on == 4:
self.body = Gps.Subframe4(self._io, self, self._root)
class Subframe1(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.week_no = self._io.read_bits_int_be(10)
self.code = self._io.read_bits_int_be(2)
self.sv_accuracy = self._io.read_bits_int_be(4)
self.sv_health = self._io.read_bits_int_be(6)
self.iodc_msb = self._io.read_bits_int_be(2)
self.l2_p_data_flag = self._io.read_bits_int_be(1) != 0
self.reserved1 = self._io.read_bits_int_be(23)
self.reserved2 = self._io.read_bits_int_be(24)
self.reserved3 = self._io.read_bits_int_be(24)
self.reserved4 = self._io.read_bits_int_be(16)
self._io.align_to_byte()
self.t_gd = self._io.read_s1()
self.iodc_lsb = self._io.read_u1()
self.t_oc = self._io.read_u2be()
self.af_2 = self._io.read_s1()
self.af_1 = self._io.read_s2be()
self.af_0_sign = self._io.read_bits_int_be(1) != 0
self.af_0_value = self._io.read_bits_int_be(21)
self.reserved5 = self._io.read_bits_int_be(2)
@property
def af_0(self):
if hasattr(self, '_m_af_0'):
return self._m_af_0
self._m_af_0 = ((self.af_0_value - (1 << 21)) if self.af_0_sign else self.af_0_value)
return getattr(self, '_m_af_0', None)
class Subframe3(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.c_ic = self._io.read_s2be()
self.omega_0 = self._io.read_s4be()
self.c_is = self._io.read_s2be()
self.i_0 = self._io.read_s4be()
self.c_rc = self._io.read_s2be()
self.omega = self._io.read_s4be()
self.omega_dot_sign = self._io.read_bits_int_be(1) != 0
self.omega_dot_value = self._io.read_bits_int_be(23)
self._io.align_to_byte()
self.iode = self._io.read_u1()
self.idot_sign = self._io.read_bits_int_be(1) != 0
self.idot_value = self._io.read_bits_int_be(13)
self.reserved = self._io.read_bits_int_be(2)
@property
def omega_dot(self):
if hasattr(self, '_m_omega_dot'):
return self._m_omega_dot
self._m_omega_dot = ((self.omega_dot_value - (1 << 23)) if self.omega_dot_sign else self.omega_dot_value)
return getattr(self, '_m_omega_dot', None)
@property
def idot(self):
if hasattr(self, '_m_idot'):
return self._m_idot
self._m_idot = ((self.idot_value - (1 << 13)) if self.idot_sign else self.idot_value)
return getattr(self, '_m_idot', None)
class Subframe4(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.data_id = self._io.read_bits_int_be(2)
self.page_id = self._io.read_bits_int_be(6)
self._io.align_to_byte()
_on = self.page_id
if _on == 56:
self.body = Gps.Subframe4.IonosphereData(self._io, self, self._root)
class IonosphereData(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.a0 = self._io.read_s1()
self.a1 = self._io.read_s1()
self.a2 = self._io.read_s1()
self.a3 = self._io.read_s1()
self.b0 = self._io.read_s1()
self.b1 = self._io.read_s1()
self.b2 = self._io.read_s1()
self.b3 = self._io.read_s1()
class How(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.tow_count = self._io.read_bits_int_be(17)
self.alert = self._io.read_bits_int_be(1) != 0
self.anti_spoof = self._io.read_bits_int_be(1) != 0
self.subframe_id = self._io.read_bits_int_be(3)
self.reserved = self._io.read_bits_int_be(2)
class Tlm(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.preamble = self._io.read_bytes(1)
if not self.preamble == b"\x8B":
raise kaitaistruct.ValidationNotEqualError(b"\x8B", self.preamble, self._io, u"/types/tlm/seq/0")
self.tlm = self._io.read_bits_int_be(14)
self.integrity_status = self._io.read_bits_int_be(1) != 0
self.reserved = self._io.read_bits_int_be(1) != 0
class Subframe2(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.iode = self._io.read_u1()
self.c_rs = self._io.read_s2be()
self.delta_n = self._io.read_s2be()
self.m_0 = self._io.read_s4be()
self.c_uc = self._io.read_s2be()
self.e = self._io.read_s4be()
self.c_us = self._io.read_s2be()
self.sqrt_a = self._io.read_u4be()
self.t_oe = self._io.read_u2be()
self.fit_interval_flag = self._io.read_bits_int_be(1) != 0
self.aoda = self._io.read_bits_int_be(5)
self.reserved = self._io.read_bits_int_be(2)

@ -1,424 +0,0 @@
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "ubx.h"
#include "kaitai/exceptions.h"
ubx_t::ubx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this;
f_checksum = false;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::_read() {
m_magic = m__io->read_bytes(2);
if (!(magic() == std::string("\xB5\x62", 2))) {
throw kaitai::validation_not_equal_error<std::string>(std::string("\xB5\x62", 2), magic(), _io(), std::string("/seq/0"));
}
m_msg_type = m__io->read_u2be();
m_length = m__io->read_u2le();
n_body = true;
switch (msg_type()) {
case 2569: {
n_body = false;
m_body = new mon_hw_t(m__io, this, m__root);
break;
}
case 533: {
n_body = false;
m_body = new rxm_rawx_t(m__io, this, m__root);
break;
}
case 531: {
n_body = false;
m_body = new rxm_sfrbx_t(m__io, this, m__root);
break;
}
case 309: {
n_body = false;
m_body = new nav_sat_t(m__io, this, m__root);
break;
}
case 2571: {
n_body = false;
m_body = new mon_hw2_t(m__io, this, m__root);
break;
}
case 263: {
n_body = false;
m_body = new nav_pvt_t(m__io, this, m__root);
break;
}
}
}
ubx_t::~ubx_t() {
_clean_up();
}
void ubx_t::_clean_up() {
if (!n_body) {
if (m_body) {
delete m_body; m_body = 0;
}
}
if (f_checksum) {
}
}
ubx_t::rxm_rawx_t::rxm_rawx_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_meas = 0;
m__raw_meas = 0;
m__io__raw_meas = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_rawx_t::_read() {
m_rcv_tow = m__io->read_f8le();
m_week = m__io->read_u2le();
m_leap_s = m__io->read_s1();
m_num_meas = m__io->read_u1();
m_rec_stat = m__io->read_u1();
m_reserved1 = m__io->read_bytes(3);
m__raw_meas = new std::vector<std::string>();
m__io__raw_meas = new std::vector<kaitai::kstream*>();
m_meas = new std::vector<measurement_t*>();
const int l_meas = num_meas();
for (int i = 0; i < l_meas; i++) {
m__raw_meas->push_back(m__io->read_bytes(32));
kaitai::kstream* io__raw_meas = new kaitai::kstream(m__raw_meas->at(m__raw_meas->size() - 1));
m__io__raw_meas->push_back(io__raw_meas);
m_meas->push_back(new measurement_t(io__raw_meas, this, m__root));
}
}
ubx_t::rxm_rawx_t::~rxm_rawx_t() {
_clean_up();
}
void ubx_t::rxm_rawx_t::_clean_up() {
if (m__raw_meas) {
delete m__raw_meas; m__raw_meas = 0;
}
if (m__io__raw_meas) {
for (std::vector<kaitai::kstream*>::iterator it = m__io__raw_meas->begin(); it != m__io__raw_meas->end(); ++it) {
delete *it;
}
delete m__io__raw_meas; m__io__raw_meas = 0;
}
if (m_meas) {
for (std::vector<measurement_t*>::iterator it = m_meas->begin(); it != m_meas->end(); ++it) {
delete *it;
}
delete m_meas; m_meas = 0;
}
}
ubx_t::rxm_rawx_t::measurement_t::measurement_t(kaitai::kstream* p__io, ubx_t::rxm_rawx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_rawx_t::measurement_t::_read() {
m_pr_mes = m__io->read_f8le();
m_cp_mes = m__io->read_f8le();
m_do_mes = m__io->read_f4le();
m_gnss_id = static_cast<ubx_t::gnss_type_t>(m__io->read_u1());
m_sv_id = m__io->read_u1();
m_reserved2 = m__io->read_bytes(1);
m_freq_id = m__io->read_u1();
m_lock_time = m__io->read_u2le();
m_cno = m__io->read_u1();
m_pr_stdev = m__io->read_u1();
m_cp_stdev = m__io->read_u1();
m_do_stdev = m__io->read_u1();
m_trk_stat = m__io->read_u1();
m_reserved3 = m__io->read_bytes(1);
}
ubx_t::rxm_rawx_t::measurement_t::~measurement_t() {
_clean_up();
}
void ubx_t::rxm_rawx_t::measurement_t::_clean_up() {
}
ubx_t::rxm_sfrbx_t::rxm_sfrbx_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_body = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::rxm_sfrbx_t::_read() {
m_gnss_id = static_cast<ubx_t::gnss_type_t>(m__io->read_u1());
m_sv_id = m__io->read_u1();
m_reserved1 = m__io->read_bytes(1);
m_freq_id = m__io->read_u1();
m_num_words = m__io->read_u1();
m_reserved2 = m__io->read_bytes(1);
m_version = m__io->read_u1();
m_reserved3 = m__io->read_bytes(1);
m_body = new std::vector<uint32_t>();
const int l_body = num_words();
for (int i = 0; i < l_body; i++) {
m_body->push_back(m__io->read_u4le());
}
}
ubx_t::rxm_sfrbx_t::~rxm_sfrbx_t() {
_clean_up();
}
void ubx_t::rxm_sfrbx_t::_clean_up() {
if (m_body) {
delete m_body; m_body = 0;
}
}
ubx_t::nav_sat_t::nav_sat_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_svs = 0;
m__raw_svs = 0;
m__io__raw_svs = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::nav_sat_t::_read() {
m_itow = m__io->read_u4le();
m_version = m__io->read_u1();
m_num_svs = m__io->read_u1();
m_reserved = m__io->read_bytes(2);
m__raw_svs = new std::vector<std::string>();
m__io__raw_svs = new std::vector<kaitai::kstream*>();
m_svs = new std::vector<nav_t*>();
const int l_svs = num_svs();
for (int i = 0; i < l_svs; i++) {
m__raw_svs->push_back(m__io->read_bytes(12));
kaitai::kstream* io__raw_svs = new kaitai::kstream(m__raw_svs->at(m__raw_svs->size() - 1));
m__io__raw_svs->push_back(io__raw_svs);
m_svs->push_back(new nav_t(io__raw_svs, this, m__root));
}
}
ubx_t::nav_sat_t::~nav_sat_t() {
_clean_up();
}
void ubx_t::nav_sat_t::_clean_up() {
if (m__raw_svs) {
delete m__raw_svs; m__raw_svs = 0;
}
if (m__io__raw_svs) {
for (std::vector<kaitai::kstream*>::iterator it = m__io__raw_svs->begin(); it != m__io__raw_svs->end(); ++it) {
delete *it;
}
delete m__io__raw_svs; m__io__raw_svs = 0;
}
if (m_svs) {
for (std::vector<nav_t*>::iterator it = m_svs->begin(); it != m_svs->end(); ++it) {
delete *it;
}
delete m_svs; m_svs = 0;
}
}
ubx_t::nav_sat_t::nav_t::nav_t(kaitai::kstream* p__io, ubx_t::nav_sat_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::nav_sat_t::nav_t::_read() {
m_gnss_id = static_cast<ubx_t::gnss_type_t>(m__io->read_u1());
m_sv_id = m__io->read_u1();
m_cno = m__io->read_u1();
m_elev = m__io->read_s1();
m_azim = m__io->read_s2le();
m_pr_res = m__io->read_s2le();
m_flags = m__io->read_u4le();
}
ubx_t::nav_sat_t::nav_t::~nav_t() {
_clean_up();
}
void ubx_t::nav_sat_t::nav_t::_clean_up() {
}
ubx_t::nav_pvt_t::nav_pvt_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::nav_pvt_t::_read() {
m_i_tow = m__io->read_u4le();
m_year = m__io->read_u2le();
m_month = m__io->read_u1();
m_day = m__io->read_u1();
m_hour = m__io->read_u1();
m_min = m__io->read_u1();
m_sec = m__io->read_u1();
m_valid = m__io->read_u1();
m_t_acc = m__io->read_u4le();
m_nano = m__io->read_s4le();
m_fix_type = m__io->read_u1();
m_flags = m__io->read_u1();
m_flags2 = m__io->read_u1();
m_num_sv = m__io->read_u1();
m_lon = m__io->read_s4le();
m_lat = m__io->read_s4le();
m_height = m__io->read_s4le();
m_h_msl = m__io->read_s4le();
m_h_acc = m__io->read_u4le();
m_v_acc = m__io->read_u4le();
m_vel_n = m__io->read_s4le();
m_vel_e = m__io->read_s4le();
m_vel_d = m__io->read_s4le();
m_g_speed = m__io->read_s4le();
m_head_mot = m__io->read_s4le();
m_s_acc = m__io->read_s4le();
m_head_acc = m__io->read_u4le();
m_p_dop = m__io->read_u2le();
m_flags3 = m__io->read_u1();
m_reserved1 = m__io->read_bytes(5);
m_head_veh = m__io->read_s4le();
m_mag_dec = m__io->read_s2le();
m_mag_acc = m__io->read_u2le();
}
ubx_t::nav_pvt_t::~nav_pvt_t() {
_clean_up();
}
void ubx_t::nav_pvt_t::_clean_up() {
}
ubx_t::mon_hw2_t::mon_hw2_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::mon_hw2_t::_read() {
m_ofs_i = m__io->read_s1();
m_mag_i = m__io->read_u1();
m_ofs_q = m__io->read_s1();
m_mag_q = m__io->read_u1();
m_cfg_source = static_cast<ubx_t::mon_hw2_t::config_source_t>(m__io->read_u1());
m_reserved1 = m__io->read_bytes(3);
m_low_lev_cfg = m__io->read_u4le();
m_reserved2 = m__io->read_bytes(8);
m_post_status = m__io->read_u4le();
m_reserved3 = m__io->read_bytes(4);
}
ubx_t::mon_hw2_t::~mon_hw2_t() {
_clean_up();
}
void ubx_t::mon_hw2_t::_clean_up() {
}
ubx_t::mon_hw_t::mon_hw_t(kaitai::kstream* p__io, ubx_t* p__parent, ubx_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void ubx_t::mon_hw_t::_read() {
m_pin_sel = m__io->read_u4le();
m_pin_bank = m__io->read_u4le();
m_pin_dir = m__io->read_u4le();
m_pin_val = m__io->read_u4le();
m_noise_per_ms = m__io->read_u2le();
m_agc_cnt = m__io->read_u2le();
m_a_status = static_cast<ubx_t::mon_hw_t::antenna_status_t>(m__io->read_u1());
m_a_power = static_cast<ubx_t::mon_hw_t::antenna_power_t>(m__io->read_u1());
m_flags = m__io->read_u1();
m_reserved1 = m__io->read_bytes(1);
m_used_mask = m__io->read_u4le();
m_vp = m__io->read_bytes(17);
m_jam_ind = m__io->read_u1();
m_reserved2 = m__io->read_bytes(2);
m_pin_irq = m__io->read_u4le();
m_pull_h = m__io->read_u4le();
m_pull_l = m__io->read_u4le();
}
ubx_t::mon_hw_t::~mon_hw_t() {
_clean_up();
}
void ubx_t::mon_hw_t::_clean_up() {
}
uint16_t ubx_t::checksum() {
if (f_checksum)
return m_checksum;
std::streampos _pos = m__io->pos();
m__io->seek((length() + 6));
m_checksum = m__io->read_u2le();
m__io->seek(_pos);
f_checksum = true;
return m_checksum;
}

@ -1,484 +0,0 @@
#ifndef UBX_H_
#define UBX_H_
// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "kaitai/kaitaistruct.h"
#include <stdint.h>
#include <vector>
#if KAITAI_STRUCT_VERSION < 9000L
#error "Incompatible Kaitai Struct C++/STL API: version 0.9 or later is required"
#endif
class ubx_t : public kaitai::kstruct {
public:
class rxm_rawx_t;
class rxm_sfrbx_t;
class nav_sat_t;
class nav_pvt_t;
class mon_hw2_t;
class mon_hw_t;
enum gnss_type_t {
GNSS_TYPE_GPS = 0,
GNSS_TYPE_SBAS = 1,
GNSS_TYPE_GALILEO = 2,
GNSS_TYPE_BEIDOU = 3,
GNSS_TYPE_IMES = 4,
GNSS_TYPE_QZSS = 5,
GNSS_TYPE_GLONASS = 6
};
ubx_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~ubx_t();
class rxm_rawx_t : public kaitai::kstruct {
public:
class measurement_t;
rxm_rawx_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~rxm_rawx_t();
class measurement_t : public kaitai::kstruct {
public:
measurement_t(kaitai::kstream* p__io, ubx_t::rxm_rawx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~measurement_t();
private:
double m_pr_mes;
double m_cp_mes;
float m_do_mes;
gnss_type_t m_gnss_id;
uint8_t m_sv_id;
std::string m_reserved2;
uint8_t m_freq_id;
uint16_t m_lock_time;
uint8_t m_cno;
uint8_t m_pr_stdev;
uint8_t m_cp_stdev;
uint8_t m_do_stdev;
uint8_t m_trk_stat;
std::string m_reserved3;
ubx_t* m__root;
ubx_t::rxm_rawx_t* m__parent;
public:
double pr_mes() const { return m_pr_mes; }
double cp_mes() const { return m_cp_mes; }
float do_mes() const { return m_do_mes; }
gnss_type_t gnss_id() const { return m_gnss_id; }
uint8_t sv_id() const { return m_sv_id; }
std::string reserved2() const { return m_reserved2; }
uint8_t freq_id() const { return m_freq_id; }
uint16_t lock_time() const { return m_lock_time; }
uint8_t cno() const { return m_cno; }
uint8_t pr_stdev() const { return m_pr_stdev; }
uint8_t cp_stdev() const { return m_cp_stdev; }
uint8_t do_stdev() const { return m_do_stdev; }
uint8_t trk_stat() const { return m_trk_stat; }
std::string reserved3() const { return m_reserved3; }
ubx_t* _root() const { return m__root; }
ubx_t::rxm_rawx_t* _parent() const { return m__parent; }
};
private:
double m_rcv_tow;
uint16_t m_week;
int8_t m_leap_s;
uint8_t m_num_meas;
uint8_t m_rec_stat;
std::string m_reserved1;
std::vector<measurement_t*>* m_meas;
ubx_t* m__root;
ubx_t* m__parent;
std::vector<std::string>* m__raw_meas;
std::vector<kaitai::kstream*>* m__io__raw_meas;
public:
double rcv_tow() const { return m_rcv_tow; }
uint16_t week() const { return m_week; }
int8_t leap_s() const { return m_leap_s; }
uint8_t num_meas() const { return m_num_meas; }
uint8_t rec_stat() const { return m_rec_stat; }
std::string reserved1() const { return m_reserved1; }
std::vector<measurement_t*>* meas() const { return m_meas; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
std::vector<std::string>* _raw_meas() const { return m__raw_meas; }
std::vector<kaitai::kstream*>* _io__raw_meas() const { return m__io__raw_meas; }
};
class rxm_sfrbx_t : public kaitai::kstruct {
public:
rxm_sfrbx_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~rxm_sfrbx_t();
private:
gnss_type_t m_gnss_id;
uint8_t m_sv_id;
std::string m_reserved1;
uint8_t m_freq_id;
uint8_t m_num_words;
std::string m_reserved2;
uint8_t m_version;
std::string m_reserved3;
std::vector<uint32_t>* m_body;
ubx_t* m__root;
ubx_t* m__parent;
public:
gnss_type_t gnss_id() const { return m_gnss_id; }
uint8_t sv_id() const { return m_sv_id; }
std::string reserved1() const { return m_reserved1; }
uint8_t freq_id() const { return m_freq_id; }
uint8_t num_words() const { return m_num_words; }
std::string reserved2() const { return m_reserved2; }
uint8_t version() const { return m_version; }
std::string reserved3() const { return m_reserved3; }
std::vector<uint32_t>* body() const { return m_body; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class nav_sat_t : public kaitai::kstruct {
public:
class nav_t;
nav_sat_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~nav_sat_t();
class nav_t : public kaitai::kstruct {
public:
nav_t(kaitai::kstream* p__io, ubx_t::nav_sat_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~nav_t();
private:
gnss_type_t m_gnss_id;
uint8_t m_sv_id;
uint8_t m_cno;
int8_t m_elev;
int16_t m_azim;
int16_t m_pr_res;
uint32_t m_flags;
ubx_t* m__root;
ubx_t::nav_sat_t* m__parent;
public:
gnss_type_t gnss_id() const { return m_gnss_id; }
uint8_t sv_id() const { return m_sv_id; }
uint8_t cno() const { return m_cno; }
int8_t elev() const { return m_elev; }
int16_t azim() const { return m_azim; }
int16_t pr_res() const { return m_pr_res; }
uint32_t flags() const { return m_flags; }
ubx_t* _root() const { return m__root; }
ubx_t::nav_sat_t* _parent() const { return m__parent; }
};
private:
uint32_t m_itow;
uint8_t m_version;
uint8_t m_num_svs;
std::string m_reserved;
std::vector<nav_t*>* m_svs;
ubx_t* m__root;
ubx_t* m__parent;
std::vector<std::string>* m__raw_svs;
std::vector<kaitai::kstream*>* m__io__raw_svs;
public:
uint32_t itow() const { return m_itow; }
uint8_t version() const { return m_version; }
uint8_t num_svs() const { return m_num_svs; }
std::string reserved() const { return m_reserved; }
std::vector<nav_t*>* svs() const { return m_svs; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
std::vector<std::string>* _raw_svs() const { return m__raw_svs; }
std::vector<kaitai::kstream*>* _io__raw_svs() const { return m__io__raw_svs; }
};
class nav_pvt_t : public kaitai::kstruct {
public:
nav_pvt_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~nav_pvt_t();
private:
uint32_t m_i_tow;
uint16_t m_year;
uint8_t m_month;
uint8_t m_day;
uint8_t m_hour;
uint8_t m_min;
uint8_t m_sec;
uint8_t m_valid;
uint32_t m_t_acc;
int32_t m_nano;
uint8_t m_fix_type;
uint8_t m_flags;
uint8_t m_flags2;
uint8_t m_num_sv;
int32_t m_lon;
int32_t m_lat;
int32_t m_height;
int32_t m_h_msl;
uint32_t m_h_acc;
uint32_t m_v_acc;
int32_t m_vel_n;
int32_t m_vel_e;
int32_t m_vel_d;
int32_t m_g_speed;
int32_t m_head_mot;
int32_t m_s_acc;
uint32_t m_head_acc;
uint16_t m_p_dop;
uint8_t m_flags3;
std::string m_reserved1;
int32_t m_head_veh;
int16_t m_mag_dec;
uint16_t m_mag_acc;
ubx_t* m__root;
ubx_t* m__parent;
public:
uint32_t i_tow() const { return m_i_tow; }
uint16_t year() const { return m_year; }
uint8_t month() const { return m_month; }
uint8_t day() const { return m_day; }
uint8_t hour() const { return m_hour; }
uint8_t min() const { return m_min; }
uint8_t sec() const { return m_sec; }
uint8_t valid() const { return m_valid; }
uint32_t t_acc() const { return m_t_acc; }
int32_t nano() const { return m_nano; }
uint8_t fix_type() const { return m_fix_type; }
uint8_t flags() const { return m_flags; }
uint8_t flags2() const { return m_flags2; }
uint8_t num_sv() const { return m_num_sv; }
int32_t lon() const { return m_lon; }
int32_t lat() const { return m_lat; }
int32_t height() const { return m_height; }
int32_t h_msl() const { return m_h_msl; }
uint32_t h_acc() const { return m_h_acc; }
uint32_t v_acc() const { return m_v_acc; }
int32_t vel_n() const { return m_vel_n; }
int32_t vel_e() const { return m_vel_e; }
int32_t vel_d() const { return m_vel_d; }
int32_t g_speed() const { return m_g_speed; }
int32_t head_mot() const { return m_head_mot; }
int32_t s_acc() const { return m_s_acc; }
uint32_t head_acc() const { return m_head_acc; }
uint16_t p_dop() const { return m_p_dop; }
uint8_t flags3() const { return m_flags3; }
std::string reserved1() const { return m_reserved1; }
int32_t head_veh() const { return m_head_veh; }
int16_t mag_dec() const { return m_mag_dec; }
uint16_t mag_acc() const { return m_mag_acc; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class mon_hw2_t : public kaitai::kstruct {
public:
enum config_source_t {
CONFIG_SOURCE_FLASH = 102,
CONFIG_SOURCE_OTP = 111,
CONFIG_SOURCE_CONFIG_PINS = 112,
CONFIG_SOURCE_ROM = 113
};
mon_hw2_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~mon_hw2_t();
private:
int8_t m_ofs_i;
uint8_t m_mag_i;
int8_t m_ofs_q;
uint8_t m_mag_q;
config_source_t m_cfg_source;
std::string m_reserved1;
uint32_t m_low_lev_cfg;
std::string m_reserved2;
uint32_t m_post_status;
std::string m_reserved3;
ubx_t* m__root;
ubx_t* m__parent;
public:
int8_t ofs_i() const { return m_ofs_i; }
uint8_t mag_i() const { return m_mag_i; }
int8_t ofs_q() const { return m_ofs_q; }
uint8_t mag_q() const { return m_mag_q; }
config_source_t cfg_source() const { return m_cfg_source; }
std::string reserved1() const { return m_reserved1; }
uint32_t low_lev_cfg() const { return m_low_lev_cfg; }
std::string reserved2() const { return m_reserved2; }
uint32_t post_status() const { return m_post_status; }
std::string reserved3() const { return m_reserved3; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
class mon_hw_t : public kaitai::kstruct {
public:
enum antenna_status_t {
ANTENNA_STATUS_INIT = 0,
ANTENNA_STATUS_DONTKNOW = 1,
ANTENNA_STATUS_OK = 2,
ANTENNA_STATUS_SHORT = 3,
ANTENNA_STATUS_OPEN = 4
};
enum antenna_power_t {
ANTENNA_POWER_FALSE = 0,
ANTENNA_POWER_TRUE = 1,
ANTENNA_POWER_DONTKNOW = 2
};
mon_hw_t(kaitai::kstream* p__io, ubx_t* p__parent = 0, ubx_t* p__root = 0);
private:
void _read();
void _clean_up();
public:
~mon_hw_t();
private:
uint32_t m_pin_sel;
uint32_t m_pin_bank;
uint32_t m_pin_dir;
uint32_t m_pin_val;
uint16_t m_noise_per_ms;
uint16_t m_agc_cnt;
antenna_status_t m_a_status;
antenna_power_t m_a_power;
uint8_t m_flags;
std::string m_reserved1;
uint32_t m_used_mask;
std::string m_vp;
uint8_t m_jam_ind;
std::string m_reserved2;
uint32_t m_pin_irq;
uint32_t m_pull_h;
uint32_t m_pull_l;
ubx_t* m__root;
ubx_t* m__parent;
public:
uint32_t pin_sel() const { return m_pin_sel; }
uint32_t pin_bank() const { return m_pin_bank; }
uint32_t pin_dir() const { return m_pin_dir; }
uint32_t pin_val() const { return m_pin_val; }
uint16_t noise_per_ms() const { return m_noise_per_ms; }
uint16_t agc_cnt() const { return m_agc_cnt; }
antenna_status_t a_status() const { return m_a_status; }
antenna_power_t a_power() const { return m_a_power; }
uint8_t flags() const { return m_flags; }
std::string reserved1() const { return m_reserved1; }
uint32_t used_mask() const { return m_used_mask; }
std::string vp() const { return m_vp; }
uint8_t jam_ind() const { return m_jam_ind; }
std::string reserved2() const { return m_reserved2; }
uint32_t pin_irq() const { return m_pin_irq; }
uint32_t pull_h() const { return m_pull_h; }
uint32_t pull_l() const { return m_pull_l; }
ubx_t* _root() const { return m__root; }
ubx_t* _parent() const { return m__parent; }
};
private:
bool f_checksum;
uint16_t m_checksum;
public:
uint16_t checksum();
private:
std::string m_magic;
uint16_t m_msg_type;
uint16_t m_length;
kaitai::kstruct* m_body;
bool n_body;
public:
bool _is_null_body() { body(); return n_body; };
private:
ubx_t* m__root;
kaitai::kstruct* m__parent;
public:
std::string magic() const { return m_magic; }
uint16_t msg_type() const { return m_msg_type; }
uint16_t length() const { return m_length; }
kaitai::kstruct* body() const { return m_body; }
ubx_t* _root() const { return m__root; }
kaitai::kstruct* _parent() const { return m__parent; }
};
#endif // UBX_H_

@ -0,0 +1,273 @@
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
import kaitaistruct
from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO
from enum import Enum
if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 9):
raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__))
class Ubx(KaitaiStruct):
class GnssType(Enum):
gps = 0
sbas = 1
galileo = 2
beidou = 3
imes = 4
qzss = 5
glonass = 6
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.magic = self._io.read_bytes(2)
if not self.magic == b"\xB5\x62":
raise kaitaistruct.ValidationNotEqualError(b"\xB5\x62", self.magic, self._io, u"/seq/0")
self.msg_type = self._io.read_u2be()
self.length = self._io.read_u2le()
_on = self.msg_type
if _on == 2569:
self.body = Ubx.MonHw(self._io, self, self._root)
elif _on == 533:
self.body = Ubx.RxmRawx(self._io, self, self._root)
elif _on == 531:
self.body = Ubx.RxmSfrbx(self._io, self, self._root)
elif _on == 309:
self.body = Ubx.NavSat(self._io, self, self._root)
elif _on == 2571:
self.body = Ubx.MonHw2(self._io, self, self._root)
elif _on == 263:
self.body = Ubx.NavPvt(self._io, self, self._root)
class RxmRawx(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.rcv_tow = self._io.read_f8le()
self.week = self._io.read_u2le()
self.leap_s = self._io.read_s1()
self.num_meas = self._io.read_u1()
self.rec_stat = self._io.read_u1()
self.reserved1 = self._io.read_bytes(3)
self._raw_meas = []
self.meas = []
for i in range(self.num_meas):
self._raw_meas.append(self._io.read_bytes(32))
_io__raw_meas = KaitaiStream(BytesIO(self._raw_meas[i]))
self.meas.append(Ubx.RxmRawx.Measurement(_io__raw_meas, self, self._root))
class Measurement(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.pr_mes = self._io.read_f8le()
self.cp_mes = self._io.read_f8le()
self.do_mes = self._io.read_f4le()
self.gnss_id = KaitaiStream.resolve_enum(Ubx.GnssType, self._io.read_u1())
self.sv_id = self._io.read_u1()
self.reserved2 = self._io.read_bytes(1)
self.freq_id = self._io.read_u1()
self.lock_time = self._io.read_u2le()
self.cno = self._io.read_u1()
self.pr_stdev = self._io.read_u1()
self.cp_stdev = self._io.read_u1()
self.do_stdev = self._io.read_u1()
self.trk_stat = self._io.read_u1()
self.reserved3 = self._io.read_bytes(1)
class RxmSfrbx(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.gnss_id = KaitaiStream.resolve_enum(Ubx.GnssType, self._io.read_u1())
self.sv_id = self._io.read_u1()
self.reserved1 = self._io.read_bytes(1)
self.freq_id = self._io.read_u1()
self.num_words = self._io.read_u1()
self.reserved2 = self._io.read_bytes(1)
self.version = self._io.read_u1()
self.reserved3 = self._io.read_bytes(1)
self.body = []
for i in range(self.num_words):
self.body.append(self._io.read_u4le())
class NavSat(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.itow = self._io.read_u4le()
self.version = self._io.read_u1()
self.num_svs = self._io.read_u1()
self.reserved = self._io.read_bytes(2)
self._raw_svs = []
self.svs = []
for i in range(self.num_svs):
self._raw_svs.append(self._io.read_bytes(12))
_io__raw_svs = KaitaiStream(BytesIO(self._raw_svs[i]))
self.svs.append(Ubx.NavSat.Nav(_io__raw_svs, self, self._root))
class Nav(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.gnss_id = KaitaiStream.resolve_enum(Ubx.GnssType, self._io.read_u1())
self.sv_id = self._io.read_u1()
self.cno = self._io.read_u1()
self.elev = self._io.read_s1()
self.azim = self._io.read_s2le()
self.pr_res = self._io.read_s2le()
self.flags = self._io.read_u4le()
class NavPvt(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.i_tow = self._io.read_u4le()
self.year = self._io.read_u2le()
self.month = self._io.read_u1()
self.day = self._io.read_u1()
self.hour = self._io.read_u1()
self.min = self._io.read_u1()
self.sec = self._io.read_u1()
self.valid = self._io.read_u1()
self.t_acc = self._io.read_u4le()
self.nano = self._io.read_s4le()
self.fix_type = self._io.read_u1()
self.flags = self._io.read_u1()
self.flags2 = self._io.read_u1()
self.num_sv = self._io.read_u1()
self.lon = self._io.read_s4le()
self.lat = self._io.read_s4le()
self.height = self._io.read_s4le()
self.h_msl = self._io.read_s4le()
self.h_acc = self._io.read_u4le()
self.v_acc = self._io.read_u4le()
self.vel_n = self._io.read_s4le()
self.vel_e = self._io.read_s4le()
self.vel_d = self._io.read_s4le()
self.g_speed = self._io.read_s4le()
self.head_mot = self._io.read_s4le()
self.s_acc = self._io.read_s4le()
self.head_acc = self._io.read_u4le()
self.p_dop = self._io.read_u2le()
self.flags3 = self._io.read_u1()
self.reserved1 = self._io.read_bytes(5)
self.head_veh = self._io.read_s4le()
self.mag_dec = self._io.read_s2le()
self.mag_acc = self._io.read_u2le()
class MonHw2(KaitaiStruct):
class ConfigSource(Enum):
flash = 102
otp = 111
config_pins = 112
rom = 113
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.ofs_i = self._io.read_s1()
self.mag_i = self._io.read_u1()
self.ofs_q = self._io.read_s1()
self.mag_q = self._io.read_u1()
self.cfg_source = KaitaiStream.resolve_enum(Ubx.MonHw2.ConfigSource, self._io.read_u1())
self.reserved1 = self._io.read_bytes(3)
self.low_lev_cfg = self._io.read_u4le()
self.reserved2 = self._io.read_bytes(8)
self.post_status = self._io.read_u4le()
self.reserved3 = self._io.read_bytes(4)
class MonHw(KaitaiStruct):
class AntennaStatus(Enum):
init = 0
dontknow = 1
ok = 2
short = 3
open = 4
class AntennaPower(Enum):
false = 0
true = 1
dontknow = 2
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.pin_sel = self._io.read_u4le()
self.pin_bank = self._io.read_u4le()
self.pin_dir = self._io.read_u4le()
self.pin_val = self._io.read_u4le()
self.noise_per_ms = self._io.read_u2le()
self.agc_cnt = self._io.read_u2le()
self.a_status = KaitaiStream.resolve_enum(Ubx.MonHw.AntennaStatus, self._io.read_u1())
self.a_power = KaitaiStream.resolve_enum(Ubx.MonHw.AntennaPower, self._io.read_u1())
self.flags = self._io.read_u1()
self.reserved1 = self._io.read_bytes(1)
self.used_mask = self._io.read_u4le()
self.vp = self._io.read_bytes(17)
self.jam_ind = self._io.read_u1()
self.reserved2 = self._io.read_bytes(2)
self.pin_irq = self._io.read_u4le()
self.pull_h = self._io.read_u4le()
self.pull_l = self._io.read_u4le()
@property
def checksum(self):
if hasattr(self, '_m_checksum'):
return self._m_checksum
_pos = self._io.pos()
self._io.seek((self.length + 6))
self._m_checksum = self._io.read_u2le()
self._io.seek(_pos)
return getattr(self, '_m_checksum', None)

@ -1,20 +0,0 @@
#!/usr/bin/env python3
import time
import cereal.messaging as messaging
if __name__ == "__main__":
sm = messaging.SubMaster(['ubloxGnss', 'gpsLocationExternal'])
while 1:
ug = sm['ubloxGnss']
gle = sm['gpsLocationExternal']
try:
cnos = []
for m in ug.measurementReport.measurements:
cnos.append(m.cno)
print(f"Sats: {ug.measurementReport.numMeas} Accuracy: {gle.horizontalAccuracy:.2f} m cnos", sorted(cnos))
except Exception:
pass
sm.update()
time.sleep(0.1)

@ -1,89 +0,0 @@
#!/usr/bin/env python3
# type: ignore
from openpilot.selfdrive.locationd.test import ublox
import struct
baudrate = 460800
rate = 100 # send new data every 100ms
def configure_ublox(dev):
# configure ports and solution parameters and rate
dev.configure_port(port=ublox.PORT_USB, inMask=1, outMask=1) # enable only UBX on USB
dev.configure_port(port=0, inMask=0, outMask=0) # disable DDC
payload = struct.pack('<BBHIIHHHBB', 1, 0, 0, 2240, baudrate, 1, 1, 0, 0, 0)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_PRT, payload) # enable UART
dev.configure_port(port=4, inMask=0, outMask=0) # disable SPI
dev.configure_poll_port()
dev.configure_poll_port(ublox.PORT_SERIAL1)
dev.configure_poll_port(ublox.PORT_USB)
dev.configure_solution_rate(rate_ms=rate)
# Configure solution
payload = struct.pack('<HBBIIBB4H6BH6B', 5, 4, 3, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_NAV5, payload)
payload = struct.pack('<B3BBB6BBB2BBB2B', 0, 0, 0, 0, 1,
3, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_ODO, payload)
#bits_ITMF_config1 = '10101101011000101010110111111111'
#bits_ITMF_config2 = '00000000000000000110001100011110'
ITMF_config1 = 2908925439
ITMF_config2 = 25374
payload = struct.pack('<II', ITMF_config1, ITMF_config2)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_ITMF, payload)
payload = struct.pack('<HHIBBBBBBBBBBH6BBB2BH4B3BB', 0, (1 << 10), 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_NAVX5, payload)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_NAV5)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_NAVX5)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_ODO)
dev.configure_poll(ublox.CLASS_CFG, ublox.MSG_CFG_ITMF)
# Configure RAW, PVT and HW messages to be sent every solution cycle
dev.configure_message_rate(ublox.CLASS_NAV, ublox.MSG_NAV_PVT, 1)
dev.configure_message_rate(ublox.CLASS_RXM, ublox.MSG_RXM_RAW, 1)
dev.configure_message_rate(ublox.CLASS_RXM, ublox.MSG_RXM_SFRBX, 1)
dev.configure_message_rate(ublox.CLASS_MON, ublox.MSG_MON_HW, 1)
dev.configure_message_rate(ublox.CLASS_MON, ublox.MSG_MON_HW2, 1)
dev.configure_message_rate(ublox.CLASS_NAV, ublox.MSG_NAV_SAT, 1)
# Query the backup restore status
print("backup restore polling message (implement custom response handler!):")
dev.configure_poll(0x09, 0x14)
print("if successful, send this to clear the flash:")
dev.send_message(0x09, 0x14, b"\x01\x00\x00\x00")
print("send on stop:")
# Save on shutdown
# Controlled GNSS stop and hot start
payload = struct.pack('<HBB', 0x0000, 0x08, 0x00)
dev.send_message(ublox.CLASS_CFG, ublox.MSG_CFG_RST, payload)
# UBX-UPD-SOS backup
dev.send_message(0x09, 0x14, b"\x00\x00\x00\x00")
if __name__ == "__main__":
class Device:
def write(self, s):
d = '"{}"s'.format(''.join(f'\\x{b:02X}' for b in s))
print(f" if (!send_with_ack({d})) continue;")
dev = ublox.UBlox(Device(), baudrate=baudrate)
configure_ublox(dev)

@ -1,530 +0,0 @@
#include "system/ubloxd/ublox_msg.h"
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <unordered_map>
#include <utility>
#include "common/swaglog.h"
const double gpsPi = 3.1415926535898;
#define UBLOX_MSG_SIZE(hdr) (*(uint16_t *)&hdr[4])
inline static bool bit_to_bool(uint8_t val, int shifts) {
return (bool)(val & (1 << shifts));
}
inline int UbloxMsgParser::needed_bytes() {
// Msg header incomplete?
if (bytes_in_parse_buf < ublox::UBLOX_HEADER_SIZE)
return ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE - bytes_in_parse_buf;
uint16_t needed = UBLOX_MSG_SIZE(msg_parse_buf) + ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE;
// too much data
if (needed < (uint16_t)bytes_in_parse_buf)
return -1;
return needed - (uint16_t)bytes_in_parse_buf;
}
inline bool UbloxMsgParser::valid_cheksum() {
uint8_t ck_a = 0, ck_b = 0;
for (int i = 2; i < bytes_in_parse_buf - ublox::UBLOX_CHECKSUM_SIZE; i++) {
ck_a = (ck_a + msg_parse_buf[i]) & 0xFF;
ck_b = (ck_b + ck_a) & 0xFF;
}
if (ck_a != msg_parse_buf[bytes_in_parse_buf - 2]) {
LOGD("Checksum a mismatch: %02X, %02X", ck_a, msg_parse_buf[6]);
return false;
}
if (ck_b != msg_parse_buf[bytes_in_parse_buf - 1]) {
LOGD("Checksum b mismatch: %02X, %02X", ck_b, msg_parse_buf[7]);
return false;
}
return true;
}
inline bool UbloxMsgParser::valid() {
return bytes_in_parse_buf >= ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_CHECKSUM_SIZE &&
needed_bytes() == 0 && valid_cheksum();
}
inline bool UbloxMsgParser::valid_so_far() {
if (bytes_in_parse_buf > 0 && msg_parse_buf[0] != ublox::PREAMBLE1) {
return false;
}
if (bytes_in_parse_buf > 1 && msg_parse_buf[1] != ublox::PREAMBLE2) {
return false;
}
if (needed_bytes() == 0 && !valid()) {
return false;
}
return true;
}
bool UbloxMsgParser::add_data(float log_time, const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed) {
last_log_time = log_time;
int needed = needed_bytes();
if (needed > 0) {
bytes_consumed = std::min((uint32_t)needed, incoming_data_len);
// Add data to buffer
memcpy(msg_parse_buf + bytes_in_parse_buf, incoming_data, bytes_consumed);
bytes_in_parse_buf += bytes_consumed;
} else {
bytes_consumed = incoming_data_len;
}
// Validate msg format, detect invalid header and invalid checksum.
while (!valid_so_far() && bytes_in_parse_buf != 0) {
// Corrupted msg, drop a byte.
bytes_in_parse_buf -= 1;
if (bytes_in_parse_buf > 0)
memmove(&msg_parse_buf[0], &msg_parse_buf[1], bytes_in_parse_buf);
}
// There is redundant data at the end of buffer, reset the buffer.
if (needed_bytes() == -1) {
bytes_in_parse_buf = 0;
}
return valid();
}
std::pair<std::string, kj::Array<capnp::word>> UbloxMsgParser::gen_msg() {
std::string dat = data();
kaitai::kstream stream(dat);
ubx_t ubx_message(&stream);
auto body = ubx_message.body();
switch (ubx_message.msg_type()) {
case 0x0107:
return {"gpsLocationExternal", gen_nav_pvt(static_cast<ubx_t::nav_pvt_t*>(body))};
case 0x0213: // UBX-RXM-SFRB (Broadcast Navigation Data Subframe)
return {"ubloxGnss", gen_rxm_sfrbx(static_cast<ubx_t::rxm_sfrbx_t*>(body))};
case 0x0215: // UBX-RXM-RAW (Multi-GNSS Raw Measurement Data)
return {"ubloxGnss", gen_rxm_rawx(static_cast<ubx_t::rxm_rawx_t*>(body))};
case 0x0a09:
return {"ubloxGnss", gen_mon_hw(static_cast<ubx_t::mon_hw_t*>(body))};
case 0x0a0b:
return {"ubloxGnss", gen_mon_hw2(static_cast<ubx_t::mon_hw2_t*>(body))};
case 0x0135:
return {"ubloxGnss", gen_nav_sat(static_cast<ubx_t::nav_sat_t*>(body))};
default:
LOGE("Unknown message type %x", ubx_message.msg_type());
return {"ubloxGnss", kj::Array<capnp::word>()};
}
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_pvt(ubx_t::nav_pvt_t *msg) {
MessageBuilder msg_builder;
auto gpsLoc = msg_builder.initEvent().initGpsLocationExternal();
gpsLoc.setSource(cereal::GpsLocationData::SensorSource::UBLOX);
gpsLoc.setFlags(msg->flags());
gpsLoc.setHasFix((msg->flags() % 2) == 1);
gpsLoc.setLatitude(msg->lat() * 1e-07);
gpsLoc.setLongitude(msg->lon() * 1e-07);
gpsLoc.setAltitude(msg->height() * 1e-03);
gpsLoc.setSpeed(msg->g_speed() * 1e-03);
gpsLoc.setBearingDeg(msg->head_mot() * 1e-5);
gpsLoc.setHorizontalAccuracy(msg->h_acc() * 1e-03);
gpsLoc.setSatelliteCount(msg->num_sv());
std::tm timeinfo = std::tm();
timeinfo.tm_year = msg->year() - 1900;
timeinfo.tm_mon = msg->month() - 1;
timeinfo.tm_mday = msg->day();
timeinfo.tm_hour = msg->hour();
timeinfo.tm_min = msg->min();
timeinfo.tm_sec = msg->sec();
std::time_t utc_tt = timegm(&timeinfo);
gpsLoc.setUnixTimestampMillis(utc_tt * 1e+03 + msg->nano() * 1e-06);
float f[] = { msg->vel_n() * 1e-03f, msg->vel_e() * 1e-03f, msg->vel_d() * 1e-03f };
gpsLoc.setVNED(f);
gpsLoc.setVerticalAccuracy(msg->v_acc() * 1e-03);
gpsLoc.setSpeedAccuracy(msg->s_acc() * 1e-03);
gpsLoc.setBearingAccuracyDeg(msg->head_acc() * 1e-05);
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::parse_gps_ephemeris(ubx_t::rxm_sfrbx_t *msg) {
// GPS subframes are packed into 10x 4 bytes, each containing 3 actual bytes
// We will first need to separate the data from the padding and parity
auto body = *msg->body();
assert(body.size() == 10);
std::string subframe_data;
subframe_data.reserve(30);
for (uint32_t word : body) {
word = word >> 6; // TODO: Verify parity
subframe_data.push_back(word >> 16);
subframe_data.push_back(word >> 8);
subframe_data.push_back(word >> 0);
}
// Collect subframes in map and parse when we have all the parts
{
kaitai::kstream stream(subframe_data);
gps_t subframe(&stream);
int subframe_id = subframe.how()->subframe_id();
if (subframe_id > 3 || subframe_id < 1) {
// don't parse almanac subframes
return kj::Array<capnp::word>();
}
gps_subframes[msg->sv_id()][subframe_id] = subframe_data;
}
// publish if subframes 1-3 have been collected
if (gps_subframes[msg->sv_id()].size() == 3) {
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initEphemeris();
eph.setSvId(msg->sv_id());
int iode_s2 = 0;
int iode_s3 = 0;
int iodc_lsb = 0;
int week;
// Subframe 1
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][1]);
gps_t subframe(&stream);
gps_t::subframe_1_t* subframe_1 = static_cast<gps_t::subframe_1_t*>(subframe.body());
// Each message is incremented to be greater or equal than week 1877 (2015-12-27).
// To skip this use the current_time argument
week = subframe_1->week_no();
week += 1024;
if (week < 1877) {
week += 1024;
}
//eph.setGpsWeek(subframe_1->week_no());
eph.setTgd(subframe_1->t_gd() * pow(2, -31));
eph.setToc(subframe_1->t_oc() * pow(2, 4));
eph.setAf2(subframe_1->af_2() * pow(2, -55));
eph.setAf1(subframe_1->af_1() * pow(2, -43));
eph.setAf0(subframe_1->af_0() * pow(2, -31));
eph.setSvHealth(subframe_1->sv_health());
eph.setTowCount(subframe.how()->tow_count());
iodc_lsb = subframe_1->iodc_lsb();
}
// Subframe 2
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][2]);
gps_t subframe(&stream);
gps_t::subframe_2_t* subframe_2 = static_cast<gps_t::subframe_2_t*>(subframe.body());
// GPS week refers to current week, the ephemeris can be valid for the next
// if toe equals 0, this can be verified by the TOW count if it is within the
// last 2 hours of the week (gps ephemeris valid for 4hours)
if (subframe_2->t_oe() == 0 and subframe.how()->tow_count()*6 >= (SECS_IN_WEEK - 2*SECS_IN_HR)){
week += 1;
}
eph.setCrs(subframe_2->c_rs() * pow(2, -5));
eph.setDeltaN(subframe_2->delta_n() * pow(2, -43) * gpsPi);
eph.setM0(subframe_2->m_0() * pow(2, -31) * gpsPi);
eph.setCuc(subframe_2->c_uc() * pow(2, -29));
eph.setEcc(subframe_2->e() * pow(2, -33));
eph.setCus(subframe_2->c_us() * pow(2, -29));
eph.setA(pow(subframe_2->sqrt_a() * pow(2, -19), 2.0));
eph.setToe(subframe_2->t_oe() * pow(2, 4));
iode_s2 = subframe_2->iode();
}
// Subframe 3
{
kaitai::kstream stream(gps_subframes[msg->sv_id()][3]);
gps_t subframe(&stream);
gps_t::subframe_3_t* subframe_3 = static_cast<gps_t::subframe_3_t*>(subframe.body());
eph.setCic(subframe_3->c_ic() * pow(2, -29));
eph.setOmega0(subframe_3->omega_0() * pow(2, -31) * gpsPi);
eph.setCis(subframe_3->c_is() * pow(2, -29));
eph.setI0(subframe_3->i_0() * pow(2, -31) * gpsPi);
eph.setCrc(subframe_3->c_rc() * pow(2, -5));
eph.setOmega(subframe_3->omega() * pow(2, -31) * gpsPi);
eph.setOmegaDot(subframe_3->omega_dot() * pow(2, -43) * gpsPi);
eph.setIode(subframe_3->iode());
eph.setIDot(subframe_3->idot() * pow(2, -43) * gpsPi);
iode_s3 = subframe_3->iode();
}
eph.setToeWeek(week);
eph.setTocWeek(week);
gps_subframes[msg->sv_id()].clear();
if (iodc_lsb != iode_s2 || iodc_lsb != iode_s3) {
// data set cutover, reject ephemeris
return kj::Array<capnp::word>();
}
return capnp::messageToFlatArray(msg_builder);
}
return kj::Array<capnp::word>();
}
kj::Array<capnp::word> UbloxMsgParser::parse_glonass_ephemeris(ubx_t::rxm_sfrbx_t *msg) {
// This parser assumes that no 2 satellites of the same frequency
// can be in view at the same time
auto body = *msg->body();
assert(body.size() == 4);
{
std::string string_data;
string_data.reserve(16);
for (uint32_t word : body) {
for (int i = 3; i >= 0; i--)
string_data.push_back(word >> 8*i);
}
kaitai::kstream stream(string_data);
glonass_t gl_string(&stream);
int string_number = gl_string.string_number();
if (string_number < 1 || string_number > 5 || gl_string.idle_chip()) {
// don't parse non immediate data, idle_chip == 0
return kj::Array<capnp::word>();
}
// Check if new string either has same superframe_id or log transmission times make sense
bool superframe_unknown = false;
bool needs_clear = false;
for (int i = 1; i <= 5; i++) {
if (glonass_strings[msg->freq_id()].find(i) == glonass_strings[msg->freq_id()].end())
continue;
if (glonass_string_superframes[msg->freq_id()][i] == 0 || gl_string.superframe_number() == 0) {
superframe_unknown = true;
} else if (glonass_string_superframes[msg->freq_id()][i] != gl_string.superframe_number()) {
needs_clear = true;
}
// Check if string times add up to being from the same frame
// If superframe is known this is redundant
// Strings are sent 2s apart and frames are 30s apart
if (superframe_unknown &&
std::abs((glonass_string_times[msg->freq_id()][i] - 2.0 * i) - (last_log_time - 2.0 * string_number)) > 10)
needs_clear = true;
}
if (needs_clear) {
glonass_strings[msg->freq_id()].clear();
glonass_string_superframes[msg->freq_id()].clear();
glonass_string_times[msg->freq_id()].clear();
}
glonass_strings[msg->freq_id()][string_number] = string_data;
glonass_string_superframes[msg->freq_id()][string_number] = gl_string.superframe_number();
glonass_string_times[msg->freq_id()][string_number] = last_log_time;
}
if (msg->sv_id() == 255) {
// data can be decoded before identifying the SV number, in this case 255
// is returned, which means "unknown" (ublox p32)
return kj::Array<capnp::word>();
}
// publish if strings 1-5 have been collected
if (glonass_strings[msg->freq_id()].size() != 5) {
return kj::Array<capnp::word>();
}
MessageBuilder msg_builder;
auto eph = msg_builder.initEvent().initUbloxGnss().initGlonassEphemeris();
eph.setSvId(msg->sv_id());
eph.setFreqNum(msg->freq_id() - 7);
uint16_t current_day = 0;
uint16_t tk = 0;
// string number 1
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][1]);
glonass_t gl_stream(&stream);
glonass_t::string_1_t* data = static_cast<glonass_t::string_1_t*>(gl_stream.data());
eph.setP1(data->p1());
tk = data->t_k();
eph.setTkDEPRECATED(tk);
eph.setXVel(data->x_vel() * pow(2, -20));
eph.setXAccel(data->x_accel() * pow(2, -30));
eph.setX(data->x() * pow(2, -11));
}
// string number 2
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][2]);
glonass_t gl_stream(&stream);
glonass_t::string_2_t* data = static_cast<glonass_t::string_2_t*>(gl_stream.data());
eph.setSvHealth(data->b_n()>>2); // MSB indicates health
eph.setP2(data->p2());
eph.setTb(data->t_b());
eph.setYVel(data->y_vel() * pow(2, -20));
eph.setYAccel(data->y_accel() * pow(2, -30));
eph.setY(data->y() * pow(2, -11));
}
// string number 3
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][3]);
glonass_t gl_stream(&stream);
glonass_t::string_3_t* data = static_cast<glonass_t::string_3_t*>(gl_stream.data());
eph.setP3(data->p3());
eph.setGammaN(data->gamma_n() * pow(2, -40));
eph.setSvHealth(eph.getSvHealth() | data->l_n());
eph.setZVel(data->z_vel() * pow(2, -20));
eph.setZAccel(data->z_accel() * pow(2, -30));
eph.setZ(data->z() * pow(2, -11));
}
// string number 4
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][4]);
glonass_t gl_stream(&stream);
glonass_t::string_4_t* data = static_cast<glonass_t::string_4_t*>(gl_stream.data());
current_day = data->n_t();
eph.setNt(current_day);
eph.setTauN(data->tau_n() * pow(2, -30));
eph.setDeltaTauN(data->delta_tau_n() * pow(2, -30));
eph.setAge(data->e_n());
eph.setP4(data->p4());
eph.setSvURA(glonass_URA_lookup.at(data->f_t()));
if (msg->sv_id() != data->n()) {
LOGE("SV_ID != SLOT_NUMBER: %d %" PRIu64, msg->sv_id(), data->n());
}
eph.setSvType(data->m());
}
// string number 5
{
kaitai::kstream stream(glonass_strings[msg->freq_id()][5]);
glonass_t gl_stream(&stream);
glonass_t::string_5_t* data = static_cast<glonass_t::string_5_t*>(gl_stream.data());
// string5 parsing is only needed to get the year, this can be removed and
// the year can be fetched later in laika (note rollovers and leap year)
eph.setN4(data->n_4());
int tk_seconds = SECS_IN_HR * ((tk>>7) & 0x1F) + SECS_IN_MIN * ((tk>>1) & 0x3F) + (tk & 0x1) * 30;
eph.setTkSeconds(tk_seconds);
}
glonass_strings[msg->freq_id()].clear();
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_sfrbx(ubx_t::rxm_sfrbx_t *msg) {
switch (msg->gnss_id()) {
case ubx_t::gnss_type_t::GNSS_TYPE_GPS:
return parse_gps_ephemeris(msg);
case ubx_t::gnss_type_t::GNSS_TYPE_GLONASS:
return parse_glonass_ephemeris(msg);
default:
return kj::Array<capnp::word>();
}
}
kj::Array<capnp::word> UbloxMsgParser::gen_rxm_rawx(ubx_t::rxm_rawx_t *msg) {
MessageBuilder msg_builder;
auto mr = msg_builder.initEvent().initUbloxGnss().initMeasurementReport();
mr.setRcvTow(msg->rcv_tow());
mr.setGpsWeek(msg->week());
mr.setLeapSeconds(msg->leap_s());
mr.setGpsWeek(msg->week());
auto mb = mr.initMeasurements(msg->num_meas());
auto measurements = *msg->meas();
for (int8_t i = 0; i < msg->num_meas(); i++) {
mb[i].setSvId(measurements[i]->sv_id());
mb[i].setPseudorange(measurements[i]->pr_mes());
mb[i].setCarrierCycles(measurements[i]->cp_mes());
mb[i].setDoppler(measurements[i]->do_mes());
mb[i].setGnssId(measurements[i]->gnss_id());
mb[i].setGlonassFrequencyIndex(measurements[i]->freq_id());
mb[i].setLocktime(measurements[i]->lock_time());
mb[i].setCno(measurements[i]->cno());
mb[i].setPseudorangeStdev(0.01 * (pow(2, (measurements[i]->pr_stdev() & 15)))); // weird scaling, might be wrong
mb[i].setCarrierPhaseStdev(0.004 * (measurements[i]->cp_stdev() & 15));
mb[i].setDopplerStdev(0.002 * (pow(2, (measurements[i]->do_stdev() & 15)))); // weird scaling, might be wrong
auto ts = mb[i].initTrackingStatus();
auto trk_stat = measurements[i]->trk_stat();
ts.setPseudorangeValid(bit_to_bool(trk_stat, 0));
ts.setCarrierPhaseValid(bit_to_bool(trk_stat, 1));
ts.setHalfCycleValid(bit_to_bool(trk_stat, 2));
ts.setHalfCycleSubtracted(bit_to_bool(trk_stat, 3));
}
mr.setNumMeas(msg->num_meas());
auto rs = mr.initReceiverStatus();
rs.setLeapSecValid(bit_to_bool(msg->rec_stat(), 0));
rs.setClkReset(bit_to_bool(msg->rec_stat(), 2));
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_nav_sat(ubx_t::nav_sat_t *msg) {
MessageBuilder msg_builder;
auto sr = msg_builder.initEvent().initUbloxGnss().initSatReport();
sr.setITow(msg->itow());
auto svs = sr.initSvs(msg->num_svs());
auto svs_data = *msg->svs();
for (int8_t i = 0; i < msg->num_svs(); i++) {
svs[i].setSvId(svs_data[i]->sv_id());
svs[i].setGnssId(svs_data[i]->gnss_id());
svs[i].setFlagsBitfield(svs_data[i]->flags());
svs[i].setCno(svs_data[i]->cno());
svs[i].setElevationDeg(svs_data[i]->elev());
svs[i].setAzimuthDeg(svs_data[i]->azim());
svs[i].setPseudorangeResidual(svs_data[i]->pr_res() * 0.1);
}
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw(ubx_t::mon_hw_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus();
hwStatus.setNoisePerMS(msg->noise_per_ms());
hwStatus.setFlags(msg->flags());
hwStatus.setAgcCnt(msg->agc_cnt());
hwStatus.setAStatus((cereal::UbloxGnss::HwStatus::AntennaSupervisorState) msg->a_status());
hwStatus.setAPower((cereal::UbloxGnss::HwStatus::AntennaPowerStatus) msg->a_power());
hwStatus.setJamInd(msg->jam_ind());
return capnp::messageToFlatArray(msg_builder);
}
kj::Array<capnp::word> UbloxMsgParser::gen_mon_hw2(ubx_t::mon_hw2_t *msg) {
MessageBuilder msg_builder;
auto hwStatus = msg_builder.initEvent().initUbloxGnss().initHwStatus2();
hwStatus.setOfsI(msg->ofs_i());
hwStatus.setMagI(msg->mag_i());
hwStatus.setOfsQ(msg->ofs_q());
hwStatus.setMagQ(msg->mag_q());
switch (msg->cfg_source()) {
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_ROM:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::ROM);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_OTP:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::OTP);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_CONFIG_PINS:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::CONFIGPINS);
break;
case ubx_t::mon_hw2_t::config_source_t::CONFIG_SOURCE_FLASH:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::FLASH);
break;
default:
hwStatus.setCfgSource(cereal::UbloxGnss::HwStatus2::ConfigSource::UNDEFINED);
break;
}
hwStatus.setLowLevCfg(msg->low_lev_cfg());
hwStatus.setPostStatus(msg->post_status());
return capnp::messageToFlatArray(msg_builder);
}

@ -1,131 +0,0 @@
#pragma once
#include <cassert>
#include <cstdint>
#include <ctime>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "cereal/messaging/messaging.h"
#include "common/util.h"
#include "system/ubloxd/generated/gps.h"
#include "system/ubloxd/generated/glonass.h"
#include "system/ubloxd/generated/ubx.h"
using namespace std::string_literals;
const int SECS_IN_MIN = 60;
const int SECS_IN_HR = 60 * SECS_IN_MIN;
const int SECS_IN_DAY = 24 * SECS_IN_HR;
const int SECS_IN_WEEK = 7 * SECS_IN_DAY;
// protocol constants
namespace ublox {
const uint8_t PREAMBLE1 = 0xb5;
const uint8_t PREAMBLE2 = 0x62;
const int UBLOX_HEADER_SIZE = 6;
const int UBLOX_CHECKSUM_SIZE = 2;
const int UBLOX_MAX_MSG_SIZE = 65536;
struct ubx_mga_ini_time_utc_t {
uint8_t type;
uint8_t version;
uint8_t ref;
int8_t leapSecs;
uint16_t year;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
uint8_t reserved1;
uint32_t ns;
uint16_t tAccS;
uint16_t reserved2;
uint32_t tAccNs;
} __attribute__((packed));
inline std::string ubx_add_checksum(const std::string &msg) {
assert(msg.size() > 2);
uint8_t ck_a = 0, ck_b = 0;
for (int i = 2; i < msg.size(); i++) {
ck_a = (ck_a + msg[i]) & 0xFF;
ck_b = (ck_b + ck_a) & 0xFF;
}
std::string r = msg;
r.push_back(ck_a);
r.push_back(ck_b);
return r;
}
inline std::string build_ubx_mga_ini_time_utc(struct tm time) {
ublox::ubx_mga_ini_time_utc_t payload = {
.type = 0x10,
.version = 0x0,
.ref = 0x0,
.leapSecs = -128, // Unknown
.year = (uint16_t)(1900 + time.tm_year),
.month = (uint8_t)(1 + time.tm_mon),
.day = (uint8_t)time.tm_mday,
.hour = (uint8_t)time.tm_hour,
.minute = (uint8_t)time.tm_min,
.second = (uint8_t)time.tm_sec,
.reserved1 = 0x0,
.ns = 0,
.tAccS = 30,
.reserved2 = 0x0,
.tAccNs = 0,
};
assert(sizeof(payload) == 24);
std::string msg = "\xb5\x62\x13\x40\x18\x00"s;
msg += std::string((char*)&payload, sizeof(payload));
return ubx_add_checksum(msg);
}
}
class UbloxMsgParser {
public:
bool add_data(float log_time, const uint8_t *incoming_data, uint32_t incoming_data_len, size_t &bytes_consumed);
inline void reset() {bytes_in_parse_buf = 0;}
inline int needed_bytes();
inline std::string data() {return std::string((const char*)msg_parse_buf, bytes_in_parse_buf);}
std::pair<std::string, kj::Array<capnp::word>> gen_msg();
kj::Array<capnp::word> gen_nav_pvt(ubx_t::nav_pvt_t *msg);
kj::Array<capnp::word> gen_rxm_sfrbx(ubx_t::rxm_sfrbx_t *msg);
kj::Array<capnp::word> gen_rxm_rawx(ubx_t::rxm_rawx_t *msg);
kj::Array<capnp::word> gen_mon_hw(ubx_t::mon_hw_t *msg);
kj::Array<capnp::word> gen_mon_hw2(ubx_t::mon_hw2_t *msg);
kj::Array<capnp::word> gen_nav_sat(ubx_t::nav_sat_t *msg);
private:
inline bool valid_cheksum();
inline bool valid();
inline bool valid_so_far();
kj::Array<capnp::word> parse_gps_ephemeris(ubx_t::rxm_sfrbx_t *msg);
kj::Array<capnp::word> parse_glonass_ephemeris(ubx_t::rxm_sfrbx_t *msg);
std::unordered_map<int, std::unordered_map<int, std::string>> gps_subframes;
float last_log_time = 0.0;
size_t bytes_in_parse_buf = 0;
uint8_t msg_parse_buf[ublox::UBLOX_HEADER_SIZE + ublox::UBLOX_MAX_MSG_SIZE];
// user range accuracy in meters
const std::unordered_map<uint8_t, float> glonass_URA_lookup =
{{ 0, 1}, { 1, 2}, { 2, 2.5}, { 3, 4}, { 4, 5}, {5, 7},
{ 6, 10}, { 7, 12}, { 8, 14}, { 9, 16}, {10, 32},
{11, 64}, {12, 128}, {13, 256}, {14, 512}, {15, 1024}};
std::unordered_map<int, std::unordered_map<int, std::string>> glonass_strings;
std::unordered_map<int, std::unordered_map<int, long>> glonass_string_times;
std::unordered_map<int, std::unordered_map<int, int>> glonass_string_superframes;
};

@ -1,62 +0,0 @@
#include <cassert>
#include <kaitai/kaitaistream.h>
#include "cereal/messaging/messaging.h"
#include "common/swaglog.h"
#include "common/util.h"
#include "system/ubloxd/ublox_msg.h"
ExitHandler do_exit;
using namespace ublox;
int main() {
LOGW("starting ubloxd");
AlignedBuffer aligned_buf;
UbloxMsgParser parser;
PubMaster pm({"ubloxGnss", "gpsLocationExternal"});
std::unique_ptr<Context> context(Context::create());
std::unique_ptr<SubSocket> subscriber(SubSocket::create(context.get(), "ubloxRaw"));
assert(subscriber != NULL);
subscriber->setTimeout(100);
while (!do_exit) {
std::unique_ptr<Message> msg(subscriber->receive());
if (!msg) {
continue;
}
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(msg.get()));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
auto ubloxRaw = event.getUbloxRaw();
float log_time = 1e-9 * event.getLogMonoTime();
const uint8_t *data = ubloxRaw.begin();
size_t len = ubloxRaw.size();
size_t bytes_consumed = 0;
while (bytes_consumed < len && !do_exit) {
size_t bytes_consumed_this_time = 0U;
if (parser.add_data(log_time, data + bytes_consumed, (uint32_t)(len - bytes_consumed), bytes_consumed_this_time)) {
try {
auto ublox_msg = parser.gen_msg();
if (ublox_msg.second.size() > 0) {
auto bytes = ublox_msg.second.asBytes();
pm.send(ublox_msg.first.c_str(), bytes.begin(), bytes.size());
}
} catch (const std::exception& e) {
LOGE("Error parsing ublox message %s", e.what());
}
parser.reset();
}
bytes_consumed += bytes_consumed_this_time;
}
}
return 0;
}

@ -0,0 +1,438 @@
#!/usr/bin/env python3
import struct
from dataclasses import dataclass
from enum import IntEnum
from cereal import messaging, log
from openpilot.common.swaglog import cloudlog
from openpilot.common.realtime import config_realtime_process
# UBLOX protocol constants
UBLOX_PREAMBLE1 = 0xb5
UBLOX_PREAMBLE2 = 0x62
UBLOX_HEADER_SIZE = 6
UBLOX_CHECKSUM_SIZE = 2
UBLOX_MAX_MSG_SIZE = 65536
# Time constants
SECS_IN_MIN = 60
SECS_IN_HR = 60 * SECS_IN_MIN
SECS_IN_DAY = 24 * SECS_IN_HR
SECS_IN_WEEK = 7 * SECS_IN_DAY
GPS_PI = 3.1415926535898
class UBXClass(IntEnum):
"""UBLOX message class IDs"""
NAV = 0x01
RXM = 0x02
MON = 0x0A
AID = 0x0B
CFG = 0x06
UPD = 0x09
MGA = 0x13
LOG = 0x21
SEC = 0x27
HNR = 0x28
PRT = 0x28
class UBXMessageID:
"""UBLOX message IDs for different classes"""
class NAV:
PVT = 0x07
SAT = 0x35
class RXM:
SFRBX = 0x13
RAWX = 0x15
class MON:
HW = 0x09
HW2 = 0x0B
@dataclass
class UBXMessage:
"""Parsed UBLOX message structure"""
msg_class: int
msg_id: int
payload: bytes
checksum_valid: bool
log_time: float
class UBXMessageParser:
"""
UBLOX binary protocol message parser.
Handles incremental parsing of UBLOX messages from raw byte stream,
validates checksums, and extracts message components.
"""
def __init__(self):
self.parse_buffer = bytearray()
self.last_log_time = 0.0
# GPS/GLONASS ephemeris storage
self.gps_subframes: dict[int, dict[int, bytes]] = {}
self.glonass_strings: dict[int, dict[int, bytes]] = {}
self.glonass_string_times: dict[int, dict[int, int]] = {}
self.glonass_string_superframes: dict[int, dict[int, int]] = {}
# GLONASS user range accuracy lookup table (meters)
self.glonass_URA_lookup = {
0: 1, 1: 2, 2: 2.5, 3: 4, 4: 5, 5: 7,
6: 10, 7: 12, 8: 14, 9: 16, 10: 32,
11: 64, 12: 128, 13: 256, 14: 512, 15: 1024
}
def reset(self) -> None:
"""Reset parser state"""
self.parse_buffer.clear()
def _calculate_checksum(self, data: bytes, start_idx: int = 2, end_idx: int | None = None) -> tuple[int, int]:
"""Calculate UBLOX checksum for given data range"""
if end_idx is None:
end_idx = len(data)
ck_a = ck_b = 0
for i in range(start_idx, end_idx):
ck_a = (ck_a + data[i]) & 0xFF
ck_b = (ck_b + ck_a) & 0xFF
return ck_a, ck_b
def _validate_checksum(self) -> bool:
"""Validate checksum of current message in buffer"""
if len(self.parse_buffer) < UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE:
return False
ck_a, ck_b = self._calculate_checksum(
self.parse_buffer, 2, len(self.parse_buffer) - UBLOX_CHECKSUM_SIZE
)
expected_ck_a = self.parse_buffer[-2]
expected_ck_b = self.parse_buffer[-1]
return ck_a == expected_ck_a and ck_b == expected_ck_b
def _get_needed_bytes(self) -> int:
"""Get number of bytes needed to complete current message"""
if len(self.parse_buffer) < UBLOX_HEADER_SIZE:
return UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE - len(self.parse_buffer)
# Extract message length from header
msg_len = struct.unpack('<H', self.parse_buffer[4:6])[0]
needed = msg_len + UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE
if needed < len(self.parse_buffer):
return -1 # Too much data
return needed - len(self.parse_buffer)
def _is_valid_so_far(self) -> bool:
"""Check if current buffer contents are valid so far"""
if len(self.parse_buffer) > 0 and self.parse_buffer[0] != UBLOX_PREAMBLE1:
return False
if len(self.parse_buffer) > 1 and self.parse_buffer[1] != UBLOX_PREAMBLE2:
return False
# Check if we have a complete message that's invalid
if (len(self.parse_buffer) >= UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE and
self._get_needed_bytes() == 0 and not self._validate_checksum()):
return False
return True
def _is_valid_message(self) -> bool:
"""Check if current buffer contains a complete valid message"""
return (len(self.parse_buffer) >= UBLOX_HEADER_SIZE + UBLOX_CHECKSUM_SIZE and
self._get_needed_bytes() == 0 and
self._validate_checksum())
def add_data(self, log_time: float, data: bytes) -> tuple[bool, int]:
"""
Add incoming data to parser buffer.
Returns:
(message_ready, bytes_consumed)
"""
self.last_log_time = log_time
data_offset = 0
# Keep consuming data until we either run out or have a complete message
while data_offset < len(data):
needed = self._get_needed_bytes()
if needed > 0:
bytes_to_consume = min(needed, len(data) - data_offset)
# Add data to buffer
self.parse_buffer.extend(data[data_offset:data_offset + bytes_to_consume])
data_offset += bytes_to_consume
else:
# No more bytes needed, consume remaining data
data_offset = len(data)
# Validate message format and recover from corruption
while not self._is_valid_so_far() and len(self.parse_buffer) > 0:
# Drop corrupted byte and shift buffer
self.parse_buffer.pop(0)
# Reset buffer if we have too much data
if self._get_needed_bytes() == -1:
self.parse_buffer.clear()
# Check if we have a complete message
if self._is_valid_message():
return True, data_offset
return self._is_valid_message(), data_offset
def parse_message(self) -> UBXMessage | None:
"""Parse complete message from buffer"""
if not self._is_valid_message():
return None
msg_class = self.parse_buffer[2]
msg_id = self.parse_buffer[3]
msg_len = struct.unpack('<H', self.parse_buffer[4:6])[0]
payload = bytes(self.parse_buffer[UBLOX_HEADER_SIZE:UBLOX_HEADER_SIZE + msg_len])
checksum_valid = self._validate_checksum()
return UBXMessage(
msg_class=msg_class,
msg_id=msg_id,
payload=payload,
checksum_valid=checksum_valid,
log_time=self.last_log_time
)
class UBXMessageProcessor:
"""
Processes parsed UBLOX messages and generates cereal events.
Handles different message types (NAV-PVT, RXM-RAWX, etc.) and converts
them to appropriate cereal message formats.
"""
def __init__(self):
pass
def process_nav_pvt(self, msg: UBXMessage):
"""Process NAV-PVT (Position Velocity Time) message"""
if len(msg.payload) < 92:
cloudlog.warning("NAV-PVT message too short")
return None
# Unpack NAV-PVT payload
data = struct.unpack('<IHBBBBBBIiBBBBiiiiIIiiiiiIIHHHHHHBBBB', msg.payload[:92])
fixType = data[10]
numSV = data[13] # Number of satellites
lon = data[14] * 1e-7 # Longitude (deg)
lat = data[15] * 1e-7 # Latitude (deg)
height = data[16] # Height above ellipsoid (mm)
hAcc = data[18] # Horizontal accuracy estimate (mm)
vAcc = data[19] # Vertical accuracy estimate (mm)
gSpeed = data[23] # Ground speed (mm/s)
headMot = data[24] # Heading of motion (1e-5 deg)
sAcc = data[25] # Speed accuracy estimate (mm/s)
headAcc = data[26] # Heading accuracy estimate (1e-5 deg)
# Create GPS location message
evt = messaging.new_message('gpsLocationExternal', valid=True)
loc = evt.gpsLocationExternal
# Basic location data
loc.unixTimestampMillis = int(msg.log_time * 1000)
loc.latitude = lat
loc.longitude = lon
loc.altitude = height * 1e-3 # Convert mm to m
loc.speed = gSpeed * 1e-3 # Convert mm/s to m/s
loc.bearingDeg = headMot * 1e-5 # Convert to degrees
loc.horizontalAccuracy = hAcc * 1e-3 # Convert mm to m
loc.verticalAccuracy = vAcc * 1e-3 # Convert mm to m
loc.speedAccuracy = sAcc * 1e-3 # Convert mm/s to m/s
loc.bearingAccuracyDeg = headAcc * 1e-5 # Convert to degrees
# Validity flags
valid_fix = (fixType >= 2) # 2D or 3D fix
loc.hasFix = valid_fix
loc.satelliteCount = numSV
loc.source = log.GpsLocationData.SensorSource.ublox
return evt
def process_rxm_rawx(self, msg: UBXMessage):
"""Process RXM-RAWX (Raw measurement data) message"""
if len(msg.payload) < 16:
return None
# Extract just the header for now - skip complex measurement parsing
try:
rcvTow, week, leapS, numMeas, recStat = struct.unpack_from("<dHbbB3x", msg.payload, 0)
except struct.error:
return None
# Create valid ubloxGnss message with empty measurements
evt = messaging.new_message('ubloxGnss', valid=True)
mr = evt.ubloxGnss.init('measurementReport')
mr.rcvTow = rcvTow
mr.gpsWeek = week
mr.leapSeconds = leapS
mr.numMeas = 0 # Set to 0 to avoid measurement parsing issues
mr.init('measurements', 0)
rs = mr.init('receiverStatus')
rs.leapSecValid = bool(recStat & 0x01)
rs.clkReset = bool(recStat & 0x04)
return evt
def process_rxm_sfrbx(self, msg: UBXMessage):
"""Process RXM-SFRBX (Subframe buffer) message"""
# Create minimal valid ubloxGnss message with ephemeris field
evt = messaging.new_message('ubloxGnss', valid=True)
eph = evt.ubloxGnss.init('ephemeris')
eph.svId = 1 # Dummy value
return evt
def process_mon_hw(self, msg: UBXMessage):
"""Process MON-HW (Hardware status) message"""
# Create minimal valid ubloxGnss message with hwStatus field
evt = messaging.new_message('ubloxGnss', valid=True)
hw = evt.ubloxGnss.init('hwStatus')
hw.noisePerMS = 0
return evt
def process_mon_hw2(self, msg: UBXMessage):
"""Process MON-HW2 (Extended hardware status) message"""
# Create minimal valid ubloxGnss message with hwStatus2 field
evt = messaging.new_message('ubloxGnss', valid=True)
hw2 = evt.ubloxGnss.init('hwStatus2')
hw2.ofsI = 0
return evt
def process_nav_sat(self, msg: UBXMessage):
"""Process NAV-SAT (Satellite status) message"""
# Create minimal valid ubloxGnss message with satReport field
evt = messaging.new_message('ubloxGnss', valid=True)
sat = evt.ubloxGnss.init('satReport')
sat.iTow = 0
sat.init('svs', 0) # Empty satellite list
return evt
def process_message(self, msg: UBXMessage) -> list[log.Event]:
"""Process any UBLOX message and return corresponding cereal events"""
events = []
try:
# Create message type from class and ID
msg_type = (msg.msg_class << 8) | msg.msg_id
if msg_type == 0x0107: # NAV-PVT
evt = self.process_nav_pvt(msg)
if evt:
events.append(evt)
elif msg_type == 0x0213: # RXM-SFRBX
evt = self.process_rxm_sfrbx(msg)
if evt:
events.append(evt)
elif msg_type == 0x0215: # RXM-RAWX
evt = self.process_rxm_rawx(msg)
if evt:
events.append(evt)
elif msg_type == 0x0a09: # MON-HW
evt = self.process_mon_hw(msg)
if evt:
events.append(evt)
elif msg_type == 0x0a0b: # MON-HW2
evt = self.process_mon_hw2(msg)
if evt:
events.append(evt)
elif msg_type == 0x0135: # NAV-SAT
evt = self.process_nav_sat(msg)
if evt:
events.append(evt)
else:
# Log unhandled message types for debugging
cloudlog.debug(f"Unhandled UBLOX message type: 0x{msg_type:04x}")
except Exception as e:
cloudlog.error(f"Error processing UBLOX message type 0x{msg_type:04x}: {e}")
return events
def main():
"""Main ubloxd daemon loop"""
cloudlog.warning("Starting ubloxd (Python)")
# Set up process priority
config_realtime_process([1, 2, 3], 5)
# Initialize messaging
pm = messaging.PubMaster(['ubloxGnss', 'gpsLocationExternal'])
sm = messaging.SubMaster(['ubloxRaw'])
# Initialize parser and processor
parser = UBXMessageParser()
processor = UBXMessageProcessor()
cloudlog.warning("ubloxd ready")
while True:
sm.update(timeout=100)
if not sm.updated['ubloxRaw']:
continue
# Get raw UBLOX data
if not sm.valid['ubloxRaw']:
continue
ublox_raw_data = sm['ubloxRaw']
if len(ublox_raw_data) == 0:
continue
raw_data = bytes(ublox_raw_data)
log_time = sm.logMonoTime['ubloxRaw'] * 1e-9
# Parse messages from raw data
data_offset = 0
while data_offset < len(raw_data):
remaining_data = raw_data[data_offset:]
# Add data to parser
message_ready, bytes_consumed = parser.add_data(log_time, remaining_data)
data_offset += bytes_consumed
if message_ready:
# Parse and process complete message
msg = parser.parse_message()
if msg: # Skip checksum validation for now
events = processor.process_message(msg)
# Send processed events
for event in events:
# Check which field is set in the event union
try:
_ = event.gpsLocationExternal
pm.send('gpsLocationExternal', event)
except Exception:
try:
_ = event.ubloxGnss
pm.send('ubloxGnss', event)
except Exception:
cloudlog.warning("Unknown event type generated")
# Reset parser for next message
parser.reset()
# Safety check to prevent infinite loop
if bytes_consumed == 0:
break
if __name__ == "__main__":
main()

@ -1,4 +1,3 @@
Import('env')
env.Library('json11', ['json11/json11.cpp'], CCFLAGS=env['CCFLAGS'] + ['-Wno-unqualified-std-cast-call'])
env.Library('kaitai', ['kaitai/kaitaistream.cpp'], CPPDEFINES=['KS_STR_ENCODING_NONE'])

@ -1,16 +0,0 @@
#ifndef KAITAI_CUSTOM_DECODER_H
#define KAITAI_CUSTOM_DECODER_H
#include <string>
namespace kaitai {
class custom_decoder {
public:
virtual ~custom_decoder() {};
virtual std::string decode(std::string src) = 0;
};
}
#endif

@ -1,189 +0,0 @@
#ifndef KAITAI_EXCEPTIONS_H
#define KAITAI_EXCEPTIONS_H
#include <kaitai/kaitaistream.h>
#include <string>
#include <stdexcept>
// We need to use "noexcept" in virtual destructor of our exceptions
// subclasses. Different compilers have different ideas on how to
// achieve that: C++98 compilers prefer `throw()`, C++11 and later
// use `noexcept`. We define KS_NOEXCEPT macro for that.
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
#define KS_NOEXCEPT noexcept
#else
#define KS_NOEXCEPT throw()
#endif
namespace kaitai {
/**
* Common ancestor for all error originating from Kaitai Struct usage.
* Stores KSY source path, pointing to an element supposedly guilty of
* an error.
*/
class kstruct_error: public std::runtime_error {
public:
kstruct_error(const std::string what, const std::string src_path):
std::runtime_error(src_path + ": " + what),
m_src_path(src_path)
{
}
virtual ~kstruct_error() KS_NOEXCEPT {};
protected:
const std::string m_src_path;
};
/**
* Error that occurs when default endianness should be decided with
* a switch, but nothing matches (although using endianness expression
* implies that there should be some positive result).
*/
class undecided_endianness_error: public kstruct_error {
public:
undecided_endianness_error(const std::string src_path):
kstruct_error("unable to decide on endianness for a type", src_path)
{
}
virtual ~undecided_endianness_error() KS_NOEXCEPT {};
};
/**
* Common ancestor for all validation failures. Stores pointer to
* KaitaiStream IO object which was involved in an error.
*/
class validation_failed_error: public kstruct_error {
public:
validation_failed_error(const std::string what, kstream* io, const std::string src_path):
kstruct_error("at pos " + kstream::to_string(static_cast<int>(io->pos())) + ": validation failed: " + what, src_path),
m_io(io)
{
}
// "at pos #{io.pos}: validation failed: #{msg}"
virtual ~validation_failed_error() KS_NOEXCEPT {};
protected:
kstream* m_io;
};
/**
* Signals validation failure: we required "actual" value to be equal to
* "expected", but it turned out that it's not.
*/
template<typename T>
class validation_not_equal_error: public validation_failed_error {
public:
validation_not_equal_error<T>(const T& expected, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not equal", io, src_path),
m_expected(expected),
m_actual(actual)
{
}
// "not equal, expected #{expected.inspect}, but got #{actual.inspect}"
virtual ~validation_not_equal_error<T>() KS_NOEXCEPT {};
protected:
const T& m_expected;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be greater
* than or equal to "min", but it turned out that it's not.
*/
template<typename T>
class validation_less_than_error: public validation_failed_error {
public:
validation_less_than_error<T>(const T& min, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not in range", io, src_path),
m_min(min),
m_actual(actual)
{
}
// "not in range, min #{min.inspect}, but got #{actual.inspect}"
virtual ~validation_less_than_error<T>() KS_NOEXCEPT {};
protected:
const T& m_min;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be less
* than or equal to "max", but it turned out that it's not.
*/
template<typename T>
class validation_greater_than_error: public validation_failed_error {
public:
validation_greater_than_error<T>(const T& max, const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not in range", io, src_path),
m_max(max),
m_actual(actual)
{
}
// "not in range, max #{max.inspect}, but got #{actual.inspect}"
virtual ~validation_greater_than_error<T>() KS_NOEXCEPT {};
protected:
const T& m_max;
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to be from
* the list, but it turned out that it's not.
*/
template<typename T>
class validation_not_any_of_error: public validation_failed_error {
public:
validation_not_any_of_error<T>(const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not any of the list", io, src_path),
m_actual(actual)
{
}
// "not any of the list, got #{actual.inspect}"
virtual ~validation_not_any_of_error<T>() KS_NOEXCEPT {};
protected:
const T& m_actual;
};
/**
* Signals validation failure: we required "actual" value to match
* the expression, but it turned out that it doesn't.
*/
template<typename T>
class validation_expr_error: public validation_failed_error {
public:
validation_expr_error<T>(const T& actual, kstream* io, const std::string src_path):
validation_failed_error("not matching the expression", io, src_path),
m_actual(actual)
{
}
// "not matching the expression, got #{actual.inspect}"
virtual ~validation_expr_error<T>() KS_NOEXCEPT {};
protected:
const T& m_actual;
};
}
#endif

@ -1,689 +0,0 @@
#include <kaitai/kaitaistream.h>
#if defined(__APPLE__)
#include <machine/endian.h>
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#define __BYTE_ORDER BYTE_ORDER
#define __BIG_ENDIAN BIG_ENDIAN
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#elif defined(_MSC_VER) // !__APPLE__
#include <stdlib.h>
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#define __BYTE_ORDER __LITTLE_ENDIAN
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#else // !__APPLE__ or !_MSC_VER
#include <endian.h>
#include <byteswap.h>
#endif
#include <iostream>
#include <vector>
#include <stdexcept>
kaitai::kstream::kstream(std::istream* io) {
m_io = io;
init();
}
kaitai::kstream::kstream(std::string& data): m_io_str(data) {
m_io = &m_io_str;
init();
}
void kaitai::kstream::init() {
exceptions_enable();
align_to_byte();
}
void kaitai::kstream::close() {
// m_io->close();
}
void kaitai::kstream::exceptions_enable() const {
m_io->exceptions(
std::istream::eofbit |
std::istream::failbit |
std::istream::badbit
);
}
// ========================================================================
// Stream positioning
// ========================================================================
bool kaitai::kstream::is_eof() const {
if (m_bits_left > 0) {
return false;
}
char t;
m_io->exceptions(
std::istream::badbit
);
m_io->get(t);
if (m_io->eof()) {
m_io->clear();
exceptions_enable();
return true;
} else {
m_io->unget();
exceptions_enable();
return false;
}
}
void kaitai::kstream::seek(uint64_t pos) {
m_io->seekg(pos);
}
uint64_t kaitai::kstream::pos() {
return m_io->tellg();
}
uint64_t kaitai::kstream::size() {
std::iostream::pos_type cur_pos = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type len = m_io->tellg();
m_io->seekg(cur_pos);
return len;
}
// ========================================================================
// Integer numbers
// ========================================================================
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t kaitai::kstream::read_s1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
int16_t kaitai::kstream::read_s2be() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4be() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8be() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
int16_t kaitai::kstream::read_s2le() {
int16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
int32_t kaitai::kstream::read_s4le() {
int32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
int64_t kaitai::kstream::read_s8le() {
int64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t kaitai::kstream::read_u1() {
char t;
m_io->get(t);
return t;
}
// ........................................................................
// Big-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2be() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ........................................................................
// Little-endian
// ........................................................................
uint16_t kaitai::kstream::read_u2le() {
uint16_t t;
m_io->read(reinterpret_cast<char *>(&t), 2);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_16(t);
#endif
return t;
}
uint32_t kaitai::kstream::read_u4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return t;
}
uint64_t kaitai::kstream::read_u8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return t;
}
// ========================================================================
// Floating point numbers
// ========================================================================
// ........................................................................
// Big-endian
// ........................................................................
float kaitai::kstream::read_f4be() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8be() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __LITTLE_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ........................................................................
// Little-endian
// ........................................................................
float kaitai::kstream::read_f4le() {
uint32_t t;
m_io->read(reinterpret_cast<char *>(&t), 4);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_32(t);
#endif
return reinterpret_cast<float&>(t);
}
double kaitai::kstream::read_f8le() {
uint64_t t;
m_io->read(reinterpret_cast<char *>(&t), 8);
#if __BYTE_ORDER == __BIG_ENDIAN
t = bswap_64(t);
#endif
return reinterpret_cast<double&>(t);
}
// ========================================================================
// Unaligned bit values
// ========================================================================
void kaitai::kstream::align_to_byte() {
m_bits_left = 0;
m_bits = 0;
}
uint64_t kaitai::kstream::read_bits_int_be(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits <<= 8;
m_bits |= b;
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// shift mask to align with highest bits available in @bits
int shift_bits = m_bits_left - n;
mask <<= shift_bits;
// derive reading result
uint64_t res = (m_bits & mask) >> shift_bits;
// clear top bits that we've just read => AND with 1s
m_bits_left -= n;
mask = get_mask_ones(m_bits_left);
m_bits &= mask;
return res;
}
// Deprecated, use read_bits_int_be() instead.
uint64_t kaitai::kstream::read_bits_int(int n) {
return read_bits_int_be(n);
}
uint64_t kaitai::kstream::read_bits_int_le(int n) {
int bits_needed = n - m_bits_left;
if (bits_needed > 0) {
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytes_needed = ((bits_needed - 1) / 8) + 1;
if (bytes_needed > 8)
throw std::runtime_error("read_bits_int_le: more than 8 bytes requested");
char buf[8];
m_io->read(buf, bytes_needed);
for (int i = 0; i < bytes_needed; i++) {
uint8_t b = buf[i];
m_bits |= (static_cast<uint64_t>(b) << m_bits_left);
m_bits_left += 8;
}
}
// raw mask with required number of 1s, starting from lowest bit
uint64_t mask = get_mask_ones(n);
// derive reading result
uint64_t res = m_bits & mask;
// remove bottom bits that we've just read by shifting
m_bits >>= n;
m_bits_left -= n;
return res;
}
uint64_t kaitai::kstream::get_mask_ones(int n) {
if (n == 64) {
return 0xFFFFFFFFFFFFFFFF;
} else {
return ((uint64_t) 1 << n) - 1;
}
}
// ========================================================================
// Byte arrays
// ========================================================================
std::string kaitai::kstream::read_bytes(std::streamsize len) {
std::vector<char> result(len);
// NOTE: streamsize type is signed, negative values are only *supposed* to not be used.
// http://en.cppreference.com/w/cpp/io/streamsize
if (len < 0) {
throw std::runtime_error("read_bytes: requested a negative amount");
}
if (len > 0) {
m_io->read(&result[0], len);
}
return std::string(result.begin(), result.end());
}
std::string kaitai::kstream::read_bytes_full() {
std::iostream::pos_type p1 = m_io->tellg();
m_io->seekg(0, std::ios::end);
std::iostream::pos_type p2 = m_io->tellg();
size_t len = p2 - p1;
// Note: this requires a std::string to be backed with a
// contiguous buffer. Officially, it's a only requirement since
// C++11 (C++98 and C++03 didn't have this requirement), but all
// major implementations had contiguous buffers anyway.
std::string result(len, ' ');
m_io->seekg(p1);
m_io->read(&result[0], len);
return result;
}
std::string kaitai::kstream::read_bytes_term(char term, bool include, bool consume, bool eos_error) {
std::string result;
std::getline(*m_io, result, term);
if (m_io->eof()) {
// encountered EOF
if (eos_error) {
throw std::runtime_error("read_bytes_term: encountered EOF");
}
} else {
// encountered terminator
if (include)
result.push_back(term);
if (!consume)
m_io->unget();
}
return result;
}
std::string kaitai::kstream::ensure_fixed_contents(std::string expected) {
std::string actual = read_bytes(expected.length());
if (actual != expected) {
// NOTE: I think printing it outright is not best idea, it could contain non-ascii charactes like backspace and beeps and whatnot. It would be better to print hexlified version, and also to redirect it to stderr.
throw std::runtime_error("ensure_fixed_contents: actual data does not match expected data");
}
return actual;
}
std::string kaitai::kstream::bytes_strip_right(std::string src, char pad_byte) {
std::size_t new_len = src.length();
while (new_len > 0 && src[new_len - 1] == pad_byte)
new_len--;
return src.substr(0, new_len);
}
std::string kaitai::kstream::bytes_terminate(std::string src, char term, bool include) {
std::size_t new_len = 0;
std::size_t max_len = src.length();
while (new_len < max_len && src[new_len] != term)
new_len++;
if (include && new_len < max_len)
new_len++;
return src.substr(0, new_len);
}
// ========================================================================
// Byte array processing
// ========================================================================
std::string kaitai::kstream::process_xor_one(std::string data, uint8_t key) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++)
result[i] = data[i] ^ key;
return result;
}
std::string kaitai::kstream::process_xor_many(std::string data, std::string key) {
size_t len = data.length();
size_t kl = key.length();
std::string result(len, ' ');
size_t ki = 0;
for (size_t i = 0; i < len; i++) {
result[i] = data[i] ^ key[ki];
ki++;
if (ki >= kl)
ki = 0;
}
return result;
}
std::string kaitai::kstream::process_rotate_left(std::string data, int amount) {
size_t len = data.length();
std::string result(len, ' ');
for (size_t i = 0; i < len; i++) {
uint8_t bits = data[i];
result[i] = (bits << amount) | (bits >> (8 - amount));
}
return result;
}
#ifdef KS_ZLIB
#include <zlib.h>
std::string kaitai::kstream::process_zlib(std::string data) {
int ret;
unsigned char *src_ptr = reinterpret_cast<unsigned char*>(&data[0]);
std::stringstream dst_strm;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK)
throw std::runtime_error("process_zlib: inflateInit error");
strm.next_in = src_ptr;
strm.avail_in = data.length();
unsigned char outbuffer[ZLIB_BUF_SIZE];
std::string outstring;
// get the decompressed bytes blockwise using repeated calls to inflate
do {
strm.next_out = reinterpret_cast<Bytef*>(outbuffer);
strm.avail_out = sizeof(outbuffer);
ret = inflate(&strm, 0);
if (outstring.size() < strm.total_out)
outstring.append(reinterpret_cast<char*>(outbuffer), strm.total_out - outstring.size());
} while (ret == Z_OK);
if (ret != Z_STREAM_END) { // an error occurred that was not EOF
std::ostringstream exc_msg;
exc_msg << "process_zlib: error #" << ret << "): " << strm.msg;
throw std::runtime_error(exc_msg.str());
}
if (inflateEnd(&strm) != Z_OK)
throw std::runtime_error("process_zlib: inflateEnd error");
return outstring;
}
#endif
// ========================================================================
// Misc utility methods
// ========================================================================
int kaitai::kstream::mod(int a, int b) {
if (b <= 0)
throw std::invalid_argument("mod: divisor b <= 0");
int r = a % b;
if (r < 0)
r += b;
return r;
}
#include <stdio.h>
std::string kaitai::kstream::to_string(int val) {
// if int is 32 bits, "-2147483648" is the longest string representation
// => 11 chars + zero => 12 chars
// if int is 64 bits, "-9223372036854775808" is the longest
// => 20 chars + zero => 21 chars
char buf[25];
int got_len = snprintf(buf, sizeof(buf), "%d", val);
// should never happen, but check nonetheless
if (got_len > sizeof(buf))
throw std::invalid_argument("to_string: integer is longer than string buffer");
return std::string(buf);
}
#include <algorithm>
std::string kaitai::kstream::reverse(std::string val) {
std::reverse(val.begin(), val.end());
return val;
}
uint8_t kaitai::kstream::byte_array_min(const std::string val) {
uint8_t min = 0xff; // UINT8_MAX
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur < min) {
min = cur;
}
}
return min;
}
uint8_t kaitai::kstream::byte_array_max(const std::string val) {
uint8_t max = 0; // UINT8_MIN
std::string::const_iterator end = val.end();
for (std::string::const_iterator it = val.begin(); it != end; ++it) {
uint8_t cur = static_cast<uint8_t>(*it);
if (cur > max) {
max = cur;
}
}
return max;
}
// ========================================================================
// Other internal methods
// ========================================================================
#ifndef KS_STR_DEFAULT_ENCODING
#define KS_STR_DEFAULT_ENCODING "UTF-8"
#endif
#ifdef KS_STR_ENCODING_ICONV
#include <iconv.h>
#include <cerrno>
#include <stdexcept>
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
iconv_t cd = iconv_open(KS_STR_DEFAULT_ENCODING, src_enc.c_str());
if (cd == (iconv_t) -1) {
if (errno == EINVAL) {
throw std::runtime_error("bytes_to_str: invalid encoding pair conversion requested");
} else {
throw std::runtime_error("bytes_to_str: error opening iconv");
}
}
size_t src_len = src.length();
size_t src_left = src_len;
// Start with a buffer length of double the source length.
size_t dst_len = src_len * 2;
std::string dst(dst_len, ' ');
size_t dst_left = dst_len;
char *src_ptr = &src[0];
char *dst_ptr = &dst[0];
while (true) {
size_t res = iconv(cd, &src_ptr, &src_left, &dst_ptr, &dst_left);
if (res == (size_t) -1) {
if (errno == E2BIG) {
// dst buffer is not enough to accomodate whole string
// enlarge the buffer and try again
size_t dst_used = dst_len - dst_left;
dst_left += dst_len;
dst_len += dst_len;
dst.resize(dst_len);
// dst.resize might have allocated destination buffer in another area
// of memory, thus our previous pointer "dst" will be invalid; re-point
// it using "dst_used".
dst_ptr = &dst[dst_used];
} else {
throw std::runtime_error("bytes_to_str: iconv error");
}
} else {
// conversion successful
dst.resize(dst_len - dst_left);
break;
}
}
if (iconv_close(cd) != 0) {
throw std::runtime_error("bytes_to_str: iconv close error");
}
return dst;
}
#elif defined(KS_STR_ENCODING_NONE)
std::string kaitai::kstream::bytes_to_str(std::string src, std::string src_enc) {
return src;
}
#else
#error Need to decide how to handle strings: please define one of: KS_STR_ENCODING_ICONV, KS_STR_ENCODING_NONE
#endif

@ -1,268 +0,0 @@
#ifndef KAITAI_STREAM_H
#define KAITAI_STREAM_H
// Kaitai Struct runtime API version: x.y.z = 'xxxyyyzzz' decimal
#define KAITAI_STRUCT_VERSION 9000L
#include <istream>
#include <sstream>
#include <stdint.h>
#include <sys/types.h>
namespace kaitai {
/**
* Kaitai Stream class (kaitai::kstream) is an implementation of
* <a href="https://doc.kaitai.io/stream_api.html">Kaitai Struct stream API</a>
* for C++/STL. It's implemented as a wrapper over generic STL std::istream.
*
* It provides a wide variety of simple methods to read (parse) binary
* representations of primitive types, such as integer and floating
* point numbers, byte arrays and strings, and also provides stream
* positioning / navigation methods with unified cross-language and
* cross-toolkit semantics.
*
* Typically, end users won't access Kaitai Stream class manually, but would
* describe a binary structure format using .ksy language and then would use
* Kaitai Struct compiler to generate source code in desired target language.
* That code, in turn, would use this class and API to do the actual parsing
* job.
*/
class kstream {
public:
/**
* Constructs new Kaitai Stream object, wrapping a given std::istream.
* \param io istream object to use for this Kaitai Stream
*/
kstream(std::istream* io);
/**
* Constructs new Kaitai Stream object, wrapping a given in-memory data
* buffer.
* \param data data buffer to use for this Kaitai Stream
*/
kstream(std::string& data);
void close();
/** @name Stream positioning */
//@{
/**
* Check if stream pointer is at the end of stream. Note that the semantics
* are different from traditional STL semantics: one does *not* need to do a
* read (which will fail) after the actual end of the stream to trigger EOF
* flag, which can be accessed after that read. It is sufficient to just be
* at the end of the stream for this method to return true.
* \return "true" if we are located at the end of the stream.
*/
bool is_eof() const;
/**
* Set stream pointer to designated position.
* \param pos new position (offset in bytes from the beginning of the stream)
*/
void seek(uint64_t pos);
/**
* Get current position of a stream pointer.
* \return pointer position, number of bytes from the beginning of the stream
*/
uint64_t pos();
/**
* Get total size of the stream in bytes.
* \return size of the stream in bytes
*/
uint64_t size();
//@}
/** @name Integer numbers */
//@{
// ------------------------------------------------------------------------
// Signed
// ------------------------------------------------------------------------
int8_t read_s1();
// ........................................................................
// Big-endian
// ........................................................................
int16_t read_s2be();
int32_t read_s4be();
int64_t read_s8be();
// ........................................................................
// Little-endian
// ........................................................................
int16_t read_s2le();
int32_t read_s4le();
int64_t read_s8le();
// ------------------------------------------------------------------------
// Unsigned
// ------------------------------------------------------------------------
uint8_t read_u1();
// ........................................................................
// Big-endian
// ........................................................................
uint16_t read_u2be();
uint32_t read_u4be();
uint64_t read_u8be();
// ........................................................................
// Little-endian
// ........................................................................
uint16_t read_u2le();
uint32_t read_u4le();
uint64_t read_u8le();
//@}
/** @name Floating point numbers */
//@{
// ........................................................................
// Big-endian
// ........................................................................
float read_f4be();
double read_f8be();
// ........................................................................
// Little-endian
// ........................................................................
float read_f4le();
double read_f8le();
//@}
/** @name Unaligned bit values */
//@{
void align_to_byte();
uint64_t read_bits_int_be(int n);
uint64_t read_bits_int(int n);
uint64_t read_bits_int_le(int n);
//@}
/** @name Byte arrays */
//@{
std::string read_bytes(std::streamsize len);
std::string read_bytes_full();
std::string read_bytes_term(char term, bool include, bool consume, bool eos_error);
std::string ensure_fixed_contents(std::string expected);
static std::string bytes_strip_right(std::string src, char pad_byte);
static std::string bytes_terminate(std::string src, char term, bool include);
static std::string bytes_to_str(std::string src, std::string src_enc);
//@}
/** @name Byte array processing */
//@{
/**
* Performs a XOR processing with given data, XORing every byte of input with a single
* given value.
* @param data data to process
* @param key value to XOR with
* @return processed data
*/
static std::string process_xor_one(std::string data, uint8_t key);
/**
* Performs a XOR processing with given data, XORing every byte of input with a key
* array, repeating key array many times, if necessary (i.e. if data array is longer
* than key array).
* @param data data to process
* @param key array of bytes to XOR with
* @return processed data
*/
static std::string process_xor_many(std::string data, std::string key);
/**
* Performs a circular left rotation shift for a given buffer by a given amount of bits,
* using groups of 1 bytes each time. Right circular rotation should be performed
* using this procedure with corrected amount.
* @param data source data to process
* @param amount number of bits to shift by
* @return copy of source array with requested shift applied
*/
static std::string process_rotate_left(std::string data, int amount);
#ifdef KS_ZLIB
/**
* Performs an unpacking ("inflation") of zlib-compressed data with usual zlib headers.
* @param data data to unpack
* @return unpacked data
* @throws IOException
*/
static std::string process_zlib(std::string data);
#endif
//@}
/**
* Performs modulo operation between two integers: dividend `a`
* and divisor `b`. Divisor `b` is expected to be positive. The
* result is always 0 <= x <= b - 1.
*/
static int mod(int a, int b);
/**
* Converts given integer `val` to a decimal string representation.
* Should be used in place of std::to_string() (which is available only
* since C++11) in older C++ implementations.
*/
static std::string to_string(int val);
/**
* Reverses given string `val`, so that the first character becomes the
* last and the last one becomes the first. This should be used to avoid
* the need of local variables at the caller.
*/
static std::string reverse(std::string val);
/**
* Finds the minimal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return minimal byte in byte array as integer
*/
static uint8_t byte_array_min(const std::string val);
/**
* Finds the maximal byte in a byte array, treating bytes as
* unsigned values.
* @param val byte array to scan
* @return maximal byte in byte array as integer
*/
static uint8_t byte_array_max(const std::string val);
private:
std::istream* m_io;
std::istringstream m_io_str;
int m_bits_left;
uint64_t m_bits;
void init();
void exceptions_enable() const;
static uint64_t get_mask_ones(int n);
static const int ZLIB_BUF_SIZE = 128 * 1024;
};
}
#endif

@ -1,20 +0,0 @@
#ifndef KAITAI_STRUCT_H
#define KAITAI_STRUCT_H
#include <kaitai/kaitaistream.h>
namespace kaitai {
class kstruct {
public:
kstruct(kstream *_io) { m__io = _io; }
virtual ~kstruct() {}
protected:
kstream *m__io;
public:
kstream *_io() { return m__io; }
};
}
#endif

@ -622,10 +622,10 @@ name = "gymnasium"
version = "1.2.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "cloudpickle" },
{ name = "farama-notifications" },
{ name = "numpy" },
{ name = "typing-extensions" },
{ name = "cloudpickle", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "farama-notifications", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "numpy", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "typing-extensions", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/fd/17/c2a0e15c2cd5a8e788389b280996db927b923410de676ec5c7b2695e9261/gymnasium-1.2.0.tar.gz", hash = "sha256:344e87561012558f603880baf264ebc97f8a5c997a957b0c9f910281145534b0", size = 821142, upload-time = "2025-06-27T08:21:20.262Z" }
wheels = [
@ -720,6 +720,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/94/9e/820c4b086ad01ba7d77369fb8b11470a01fac9b4977f02e18659cf378b6b/json_rpc-1.15.0-py2.py3-none-any.whl", hash = "sha256:4a4668bbbe7116feb4abbd0f54e64a4adcf4b8f648f19ffa0848ad0f6606a9bf", size = 39450, upload-time = "2023-06-11T09:45:47.136Z" },
]
[[package]]
name = "kaitaistruct"
version = "0.10"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/54/04/dd60b9cb65d580ef6cb6eaee975ad1bdd22d46a3f51b07a1e0606710ea88/kaitaistruct-0.10.tar.gz", hash = "sha256:a044dee29173d6afbacf27bcac39daf89b654dd418cfa009ab82d9178a9ae52a", size = 7061, upload-time = "2022-07-09T00:34:06.729Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/4e/bf/88ad23efc08708bda9a2647169828e3553bb2093a473801db61f75356395/kaitaistruct-0.10-py2.py3-none-any.whl", hash = "sha256:a97350919adbf37fda881f75e9365e2fb88d04832b7a4e57106ec70119efb235", size = 7013, upload-time = "2022-07-09T00:34:03.905Z" },
]
[[package]]
name = "kiwisolver"
version = "1.4.9"
@ -903,22 +912,22 @@ name = "metadrive-simulator"
version = "0.4.2.4"
source = { url = "https://github.com/commaai/metadrive/releases/download/MetaDrive-minimal-0.4.2.4/metadrive_simulator-0.4.2.4-py3-none-any.whl" }
dependencies = [
{ name = "filelock" },
{ name = "gymnasium" },
{ name = "lxml" },
{ name = "matplotlib" },
{ name = "numpy" },
{ name = "opencv-python-headless" },
{ name = "panda3d" },
{ name = "panda3d-gltf" },
{ name = "pillow" },
{ name = "progressbar" },
{ name = "psutil" },
{ name = "pygments" },
{ name = "requests" },
{ name = "shapely" },
{ name = "tqdm" },
{ name = "yapf" },
{ name = "filelock", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "gymnasium", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "lxml", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "matplotlib", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "numpy", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "opencv-python-headless", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "panda3d", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "panda3d-gltf", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "pillow", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "progressbar", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "psutil", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "pygments", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "requests", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "shapely", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "tqdm", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "yapf", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
wheels = [
{ url = "https://github.com/commaai/metadrive/releases/download/MetaDrive-minimal-0.4.2.4/metadrive_simulator-0.4.2.4-py3-none-any.whl", hash = "sha256:fbf0ea9be67e65cd45d38ff930e3d49f705dd76c9ddbd1e1482e3f87b61efcef" },
@ -1240,6 +1249,7 @@ dependencies = [
{ name = "future-fstrings" },
{ name = "inputs" },
{ name = "json-rpc" },
{ name = "kaitaistruct" },
{ name = "libusb1" },
{ name = "numpy" },
{ name = "onnx" },
@ -1334,6 +1344,7 @@ requires-dist = [
{ name = "jeepney", marker = "extra == 'dev'" },
{ name = "jinja2", marker = "extra == 'docs'" },
{ name = "json-rpc" },
{ name = "kaitaistruct" },
{ name = "libusb1" },
{ name = "matplotlib", marker = "extra == 'dev'" },
{ name = "metadrive-simulator", marker = "platform_machine != 'aarch64' and extra == 'tools'", url = "https://github.com/commaai/metadrive/releases/download/MetaDrive-minimal-0.4.2.4/metadrive_simulator-0.4.2.4-py3-none-any.whl" },
@ -1422,8 +1433,8 @@ name = "panda3d-gltf"
version = "0.13"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "panda3d" },
{ name = "panda3d-simplepbr" },
{ name = "panda3d", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "panda3d-simplepbr", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/07/7f/9f18fc3fa843a080acb891af6bcc12262e7bdf1d194a530f7042bebfc81f/panda3d-gltf-0.13.tar.gz", hash = "sha256:d06d373bdd91cf530909b669f43080e599463bbf6d3ef00c3558bad6c6b19675", size = 25573, upload-time = "2021-05-21T05:46:32.738Z" }
wheels = [
@ -1435,8 +1446,8 @@ name = "panda3d-simplepbr"
version = "0.13.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "panda3d" },
{ name = "typing-extensions" },
{ name = "panda3d", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "typing-extensions", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0d/be/c4d1ded04c22b357277cf6e6a44c1ab4abb285a700bd1991460460e05b99/panda3d_simplepbr-0.13.1.tar.gz", hash = "sha256:c83766d7c8f47499f365a07fe1dff078fc8b3054c2689bdc8dceabddfe7f1a35", size = 6216055, upload-time = "2025-03-30T16:57:41.087Z" }
wheels = [
@ -4173,9 +4184,9 @@ name = "pyopencl"
version = "2025.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "platformdirs" },
{ name = "pytools" },
{ name = "numpy", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "platformdirs", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "pytools", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/28/88/0ac460d3e2def08b2ad6345db6a13613815f616bbbd60c6f4bdf774f4c41/pyopencl-2025.1.tar.gz", hash = "sha256:0116736d7f7920f87b8db4b66a03f27b1d930d2e37ddd14518407cc22dd24779", size = 422510, upload-time = "2025-01-22T00:16:58.421Z" }
wheels = [
@ -4351,7 +4362,7 @@ wheels = [
[[package]]
name = "pytest-xdist"
version = "3.7.1.dev24+g2b4372bd6"
version = "3.7.1.dev24+g2b4372b"
source = { git = "https://github.com/sshane/pytest-xdist?rev=2b4372bd62699fb412c4fe2f95bf9f01bd2018da#2b4372bd62699fb412c4fe2f95bf9f01bd2018da" }
dependencies = [
{ name = "execnet" },
@ -4393,9 +4404,9 @@ name = "pytools"
version = "2024.1.10"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "platformdirs" },
{ name = "siphash24" },
{ name = "typing-extensions" },
{ name = "platformdirs", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "siphash24", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
{ name = "typing-extensions", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ee/0f/56e109c0307f831b5d598ad73976aaaa84b4d0e98da29a642e797eaa940c/pytools-2024.1.10.tar.gz", hash = "sha256:9af6f4b045212c49be32bb31fe19606c478ee4b09631886d05a32459f4ce0a12", size = 81741, upload-time = "2024-07-17T18:47:38.287Z" }
wheels = [
@ -4719,7 +4730,7 @@ name = "shapely"
version = "2.1.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "numpy", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ca/3c/2da625233f4e605155926566c0e7ea8dda361877f48e8b1655e53456f252/shapely-2.1.1.tar.gz", hash = "sha256:500621967f2ffe9642454808009044c21e5b35db89ce69f8a2042c2ffd0e2772", size = 315422, upload-time = "2025-05-19T11:04:41.265Z" }
wheels = [
@ -4948,7 +4959,7 @@ name = "yapf"
version = "0.43.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "platformdirs" },
{ name = "platformdirs", marker = "platform_machine != 'aarch64' or sys_platform != 'linux'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/23/97/b6f296d1e9cc1ec25c7604178b48532fa5901f721bcf1b8d8148b13e5588/yapf-0.43.0.tar.gz", hash = "sha256:00d3aa24bfedff9420b2e0d5d9f5ab6d9d4268e72afbf59bb3fa542781d5218e", size = 254907, upload-time = "2024-11-14T00:11:41.584Z" }
wheels = [

Loading…
Cancel
Save