|
|
|
@ -1,29 +1,10 @@ |
|
|
|
|
import time |
|
|
|
|
import numpy as np |
|
|
|
|
from openpilot.common.realtime import DT_MDL |
|
|
|
|
from openpilot.common.numpy_fast import interp |
|
|
|
|
from openpilot.system.swaglog import cloudlog |
|
|
|
|
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc |
|
|
|
|
from openpilot.selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N |
|
|
|
|
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error |
|
|
|
|
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper |
|
|
|
|
import cereal.messaging as messaging |
|
|
|
|
from cereal import log |
|
|
|
|
|
|
|
|
|
TRAJECTORY_SIZE = 33 |
|
|
|
|
CAMERA_OFFSET = 0.04 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PATH_COST = 1.0 |
|
|
|
|
LATERAL_MOTION_COST = 0.11 |
|
|
|
|
LATERAL_ACCEL_COST = 0.0 |
|
|
|
|
LATERAL_JERK_COST = 0.04 |
|
|
|
|
# Extreme steering rate is unpleasant, even |
|
|
|
|
# when it does not cause bad jerk. |
|
|
|
|
# TODO this cost should be lowered when low |
|
|
|
|
# speed lateral control is stable on all cars |
|
|
|
|
STEERING_RATE_COST = 700.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LateralPlanner: |
|
|
|
|
def __init__(self, CP, debug=False): |
|
|
|
@ -42,29 +23,21 @@ class LateralPlanner: |
|
|
|
|
self.t_idxs = np.arange(TRAJECTORY_SIZE) |
|
|
|
|
self.y_pts = np.zeros((TRAJECTORY_SIZE,)) |
|
|
|
|
self.v_plan = np.zeros((TRAJECTORY_SIZE,)) |
|
|
|
|
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32) |
|
|
|
|
self.v_ego = 0.0 |
|
|
|
|
self.l_lane_change_prob = 0.0 |
|
|
|
|
self.r_lane_change_prob = 0.0 |
|
|
|
|
|
|
|
|
|
self.debug_mode = debug |
|
|
|
|
|
|
|
|
|
self.lat_mpc = LateralMpc() |
|
|
|
|
self.reset_mpc(np.zeros(4)) |
|
|
|
|
|
|
|
|
|
def reset_mpc(self, x0=None): |
|
|
|
|
if x0 is None: |
|
|
|
|
x0 = np.zeros(4) |
|
|
|
|
self.x0 = x0 |
|
|
|
|
self.lat_mpc.reset(x0=self.x0) |
|
|
|
|
|
|
|
|
|
def update(self, sm): |
|
|
|
|
# clip speed , lateral planning is not possible at 0 speed |
|
|
|
|
measured_curvature = sm['controlsState'].curvature |
|
|
|
|
# TODO: do something for 0 speed |
|
|
|
|
# TODO: is a small first order filter needed here? |
|
|
|
|
v_ego_car = sm['carState'].vEgo |
|
|
|
|
|
|
|
|
|
# Parse model predictions |
|
|
|
|
md = sm['modelV2'] |
|
|
|
|
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE: |
|
|
|
|
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE: |
|
|
|
|
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z]) |
|
|
|
|
self.t_idxs = np.array(md.position.t) |
|
|
|
|
self.plan_yaw = np.array(md.orientation.z) |
|
|
|
@ -73,6 +46,8 @@ class LateralPlanner: |
|
|
|
|
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car) |
|
|
|
|
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf) |
|
|
|
|
self.v_ego = self.v_plan[0] |
|
|
|
|
# YOLO e2e planning |
|
|
|
|
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate]) |
|
|
|
|
|
|
|
|
|
# Lane change logic |
|
|
|
|
desire_state = md.meta.desireState |
|
|
|
@ -82,66 +57,23 @@ class LateralPlanner: |
|
|
|
|
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob |
|
|
|
|
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob) |
|
|
|
|
|
|
|
|
|
self.lat_mpc.set_weights(PATH_COST, LATERAL_MOTION_COST, |
|
|
|
|
LATERAL_ACCEL_COST, LATERAL_JERK_COST, |
|
|
|
|
STEERING_RATE_COST) |
|
|
|
|
|
|
|
|
|
y_pts = self.path_xyz[:LAT_MPC_N+1, 1] |
|
|
|
|
heading_pts = self.plan_yaw[:LAT_MPC_N+1] |
|
|
|
|
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1] |
|
|
|
|
self.y_pts = y_pts |
|
|
|
|
|
|
|
|
|
assert len(y_pts) == LAT_MPC_N + 1 |
|
|
|
|
assert len(heading_pts) == LAT_MPC_N + 1 |
|
|
|
|
assert len(yaw_rate_pts) == LAT_MPC_N + 1 |
|
|
|
|
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf) |
|
|
|
|
p = np.column_stack([self.v_plan, lateral_factor]) |
|
|
|
|
self.lat_mpc.run(self.x0, |
|
|
|
|
p, |
|
|
|
|
y_pts, |
|
|
|
|
heading_pts, |
|
|
|
|
yaw_rate_pts) |
|
|
|
|
# init state for next iteration |
|
|
|
|
# mpc.u_sol is the desired second derivative of psi given x0 curv state. |
|
|
|
|
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate. |
|
|
|
|
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control. |
|
|
|
|
self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3]) |
|
|
|
|
|
|
|
|
|
# Check for infeasible MPC solution |
|
|
|
|
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any() |
|
|
|
|
t = time.monotonic() |
|
|
|
|
if mpc_nans or self.lat_mpc.solution_status != 0: |
|
|
|
|
self.reset_mpc() |
|
|
|
|
self.x0[3] = measured_curvature * self.v_ego |
|
|
|
|
if t > self.last_cloudlog_t + 5.0: |
|
|
|
|
self.last_cloudlog_t = t |
|
|
|
|
cloudlog.warning("Lateral mpc - nan: True") |
|
|
|
|
|
|
|
|
|
if self.lat_mpc.cost > 1e6 or mpc_nans: |
|
|
|
|
self.solution_invalid_cnt += 1 |
|
|
|
|
else: |
|
|
|
|
self.solution_invalid_cnt = 0 |
|
|
|
|
|
|
|
|
|
def publish(self, sm, pm): |
|
|
|
|
plan_solution_valid = self.solution_invalid_cnt < 2 |
|
|
|
|
plan_send = messaging.new_message('lateralPlan') |
|
|
|
|
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2']) |
|
|
|
|
|
|
|
|
|
lateralPlan = plan_send.lateralPlan |
|
|
|
|
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2'] |
|
|
|
|
lateralPlan.dPathPoints = self.y_pts.tolist() |
|
|
|
|
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist() |
|
|
|
|
lateralPlan.psis = self.x_sol[0:CONTROL_N, 2].tolist() |
|
|
|
|
|
|
|
|
|
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist() |
|
|
|
|
lateralPlan.curvatureRates = [float(x.item() / self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] |
|
|
|
|
lateralPlan.curvatures = (self.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist() |
|
|
|
|
lateralPlan.curvatureRates = [float(0) for _ in range(CONTROL_N-1)] # TODO: unused |
|
|
|
|
|
|
|
|
|
lateralPlan.mpcSolutionValid = bool(plan_solution_valid) |
|
|
|
|
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time |
|
|
|
|
lateralPlan.mpcSolutionValid = bool(1) |
|
|
|
|
lateralPlan.solverExecutionTime = 0.0 |
|
|
|
|
if self.debug_mode: |
|
|
|
|
lateralPlan.solverCost = self.lat_mpc.cost |
|
|
|
|
lateralPlan.solverState = log.LateralPlan.SolverState.new_message() |
|
|
|
|
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist() |
|
|
|
|
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist() |
|
|
|
|
lateralPlan.solverState.x = self.x_sol.tolist() |
|
|
|
|
|
|
|
|
|
lateralPlan.desire = self.DH.desire |
|
|
|
|
lateralPlan.useLaneLines = False |
|
|
|
|