parent
164880524a
commit
af97a96080
2 changed files with 106 additions and 1 deletions
@ -0,0 +1,105 @@ |
||||
#!/usr/bin/env python3 |
||||
import sys |
||||
import numpy as np |
||||
import sympy as sp |
||||
|
||||
from selfdrive.locationd.models.constants import ObservationKind |
||||
from rednose.helpers.ekf_sym import gen_code, EKF_sym |
||||
|
||||
|
||||
class LaneKalman(): |
||||
name = 'lane' |
||||
|
||||
@staticmethod |
||||
def generate_code(generated_dir): |
||||
# make functions and jacobians with sympy |
||||
# state variables |
||||
dim = 6 |
||||
state = sp.MatrixSymbol('state', dim, 1) |
||||
|
||||
dd = sp.Symbol('dd') # WARNING: NOT TIME |
||||
|
||||
# Time derivative of the state as a function of state |
||||
state_dot = sp.Matrix(np.zeros((dim, 1))) |
||||
state_dot[:3,0] = sp.Matrix(state[3:6,0]) |
||||
|
||||
# Basic descretization, 1st order intergrator |
||||
# Can be pretty bad if dt is big |
||||
f_sym = sp.Matrix(state) + dd*state_dot |
||||
|
||||
# |
||||
# Observation functions |
||||
# |
||||
h_lane_sym = sp.Matrix(state[:3,0]) |
||||
obs_eqs = [[h_lane_sym, ObservationKind.LANE_PT, None]] |
||||
gen_code(generated_dir, LaneKalman.name, f_sym, dd, state, obs_eqs, dim, dim) |
||||
|
||||
def __init__(self, generated_dir, pt_std=5): |
||||
# state |
||||
# left and right lane centers in ecef |
||||
# WARNING: this is not a temporal model |
||||
# the 'time' in this kalman filter is |
||||
# the distance traveled by the vehicle, |
||||
# which should approximately be the |
||||
# distance along the lane path |
||||
# a more logical parametrization |
||||
# states 0-2 are ecef coordinates distance d |
||||
# states 3-5 is the 3d "velocity" of the |
||||
# lane in ecef (m/m). |
||||
x_initial = np.array([0,0,0, |
||||
0,0,0]) |
||||
|
||||
# state covariance |
||||
P_initial = np.diag([1e16, 1e16, 1e16, |
||||
1**2, 1**2, 1**2]) |
||||
|
||||
# process noise |
||||
Q = np.diag([0.1**2, 0.1**2, 0.1**2, |
||||
0.1**2, 0.1**2, 0.1*2]) |
||||
|
||||
self.dim_state = len(x_initial) |
||||
|
||||
# init filter |
||||
self.filter = EKF_sym(generated_dir, self.name, Q, x_initial, P_initial, x_initial.shape[0], P_initial.shape[0]) |
||||
self.obs_noise = {ObservationKind.LANE_PT: np.diag([pt_std**2]*3)} |
||||
|
||||
@property |
||||
def x(self): |
||||
return self.filter.state() |
||||
|
||||
@property |
||||
def P(self): |
||||
return self.filter.covs() |
||||
|
||||
def predict(self, t): |
||||
return self.filter.predict(t) |
||||
|
||||
def rts_smooth(self, estimates): |
||||
return self.filter.rts_smooth(estimates, norm_quats=False) |
||||
|
||||
|
||||
def init_state(self, state, covs_diag=None, covs=None, filter_time=None): |
||||
if covs_diag is not None: |
||||
P = np.diag(covs_diag) |
||||
elif covs is not None: |
||||
P = covs |
||||
else: |
||||
P = self.filter.covs() |
||||
self.filter.init_state(state, P, filter_time) |
||||
|
||||
def predict_and_observe(self, t, kind, data): |
||||
data = np.atleast_2d(data) |
||||
return self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data))) |
||||
|
||||
def get_R(self, kind, n): |
||||
obs_noise = self.obs_noise[kind] |
||||
dim = obs_noise.shape[0] |
||||
R = np.zeros((n, dim, dim)) |
||||
for i in range(n): |
||||
R[i,:,:] = obs_noise |
||||
return R |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
generated_dir = sys.argv[2] |
||||
LaneKalman.generate_code(generated_dir) |
Loading…
Reference in new issue