|
|
|
@ -24,15 +24,17 @@ SOURCES = ['lead0', 'lead1', 'cruise'] |
|
|
|
|
|
|
|
|
|
X_DIM = 3 |
|
|
|
|
U_DIM = 1 |
|
|
|
|
COST_E_DIM = 4 |
|
|
|
|
PARAM_DIM= 4 |
|
|
|
|
COST_E_DIM = 5 |
|
|
|
|
COST_DIM = COST_E_DIM + 1 |
|
|
|
|
CONSTR_DIM = 4 |
|
|
|
|
|
|
|
|
|
X_EGO_OBSTACLE_COST = 3. |
|
|
|
|
V_EGO_COST = 0. |
|
|
|
|
X_EGO_COST = 0. |
|
|
|
|
V_EGO_COST = 0. |
|
|
|
|
A_EGO_COST = 0. |
|
|
|
|
J_EGO_COST = 10. |
|
|
|
|
J_EGO_COST = 5.0 |
|
|
|
|
A_CHANGE_COST = .5 |
|
|
|
|
DANGER_ZONE_COST = 100. |
|
|
|
|
CRASH_DISTANCE = .5 |
|
|
|
|
LIMIT_COST = 1e6 |
|
|
|
@ -85,7 +87,8 @@ def gen_long_model(): |
|
|
|
|
x_obstacle = SX.sym('x_obstacle') |
|
|
|
|
a_min = SX.sym('a_min') |
|
|
|
|
a_max = SX.sym('a_max') |
|
|
|
|
model.p = vertcat(a_min, a_max, x_obstacle) |
|
|
|
|
prev_a = SX.sym('prev_a') |
|
|
|
|
model.p = vertcat(a_min, a_max, x_obstacle, prev_a) |
|
|
|
|
|
|
|
|
|
# dynamics model |
|
|
|
|
f_expl = vertcat(v_ego, a_ego, j_ego) |
|
|
|
@ -118,6 +121,7 @@ def gen_long_mpc_solver(): |
|
|
|
|
|
|
|
|
|
a_min, a_max = ocp.model.p[0], ocp.model.p[1] |
|
|
|
|
x_obstacle = ocp.model.p[2] |
|
|
|
|
prev_a = ocp.model.p[3] |
|
|
|
|
|
|
|
|
|
ocp.cost.yref = np.zeros((COST_DIM, )) |
|
|
|
|
ocp.cost.yref_e = np.zeros((COST_E_DIM, )) |
|
|
|
@ -132,6 +136,7 @@ def gen_long_mpc_solver(): |
|
|
|
|
x_ego, |
|
|
|
|
v_ego, |
|
|
|
|
a_ego, |
|
|
|
|
20*(a_ego - prev_a), |
|
|
|
|
j_ego] |
|
|
|
|
ocp.model.cost_y_expr = vertcat(*costs) |
|
|
|
|
ocp.model.cost_y_expr_e = vertcat(*costs[:-1]) |
|
|
|
@ -148,7 +153,7 @@ def gen_long_mpc_solver(): |
|
|
|
|
|
|
|
|
|
x0 = np.zeros(X_DIM) |
|
|
|
|
ocp.constraints.x0 = x0 |
|
|
|
|
ocp.parameter_values = np.array([-1.2, 1.2, 0.0]) |
|
|
|
|
ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0]) |
|
|
|
|
|
|
|
|
|
# We put all constraint cost weights to 0 and only set them at runtime |
|
|
|
|
cost_weights = np.zeros(CONSTR_DIM) |
|
|
|
@ -198,6 +203,7 @@ class LongitudinalMpc(): |
|
|
|
|
self.solver = AcadosOcpSolverFast('long', N, EXPORT_DIR) |
|
|
|
|
self.v_solution = [0.0 for i in range(N+1)] |
|
|
|
|
self.a_solution = [0.0 for i in range(N+1)] |
|
|
|
|
self.prev_a = self.a_solution |
|
|
|
|
self.j_solution = [0.0 for i in range(N)] |
|
|
|
|
self.yref = np.zeros((N+1, COST_DIM)) |
|
|
|
|
for i in range(N): |
|
|
|
@ -205,7 +211,7 @@ class LongitudinalMpc(): |
|
|
|
|
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM]) |
|
|
|
|
self.x_sol = np.zeros((N+1, X_DIM)) |
|
|
|
|
self.u_sol = np.zeros((N,1)) |
|
|
|
|
self.params = np.zeros((N+1,3)) |
|
|
|
|
self.params = np.zeros((N+1, PARAM_DIM)) |
|
|
|
|
for i in range(N+1): |
|
|
|
|
self.solver.set(i, 'x', np.zeros(X_DIM)) |
|
|
|
|
self.last_cloudlog_t = 0 |
|
|
|
@ -222,8 +228,9 @@ class LongitudinalMpc(): |
|
|
|
|
self.set_weights_for_lead_policy() |
|
|
|
|
|
|
|
|
|
def set_weights_for_lead_policy(self): |
|
|
|
|
W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, J_EGO_COST])) |
|
|
|
|
W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, A_CHANGE_COST, J_EGO_COST])) |
|
|
|
|
for i in range(N): |
|
|
|
|
W[4,4] = A_CHANGE_COST * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0]) |
|
|
|
|
self.solver.cost_set(i, 'W', W) |
|
|
|
|
# Setting the slice without the copy make the array not contiguous, |
|
|
|
|
# causing issues with the C interface. |
|
|
|
@ -235,7 +242,7 @@ class LongitudinalMpc(): |
|
|
|
|
self.solver.cost_set(i, 'Zl', Zl) |
|
|
|
|
|
|
|
|
|
def set_weights_for_xva_policy(self): |
|
|
|
|
W = np.asfortranarray(np.diag([0., 10., 1., 10., 1.])) |
|
|
|
|
W = np.asfortranarray(np.diag([0., 10., 1., 10., 0.0, 1.])) |
|
|
|
|
for i in range(N): |
|
|
|
|
self.solver.cost_set(i, 'W', W) |
|
|
|
|
# Setting the slice without the copy make the array not contiguous, |
|
|
|
@ -320,6 +327,7 @@ class LongitudinalMpc(): |
|
|
|
|
x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle]) |
|
|
|
|
self.source = SOURCES[np.argmin(x_obstacles[0])] |
|
|
|
|
self.params[:,2] = np.min(x_obstacles, axis=1) |
|
|
|
|
self.params[:,3] = np.copy(self.prev_a) |
|
|
|
|
|
|
|
|
|
self.run() |
|
|
|
|
if (np.any(lead_xv_0[:,0] - self.x_sol[:,0] < CRASH_DISTANCE) and |
|
|
|
@ -339,7 +347,8 @@ class LongitudinalMpc(): |
|
|
|
|
self.accel_limit_arr[:,1] = 10. |
|
|
|
|
x_obstacle = 1e5*np.ones((N+1)) |
|
|
|
|
self.params = np.concatenate([self.accel_limit_arr, |
|
|
|
|
x_obstacle[:,None]], axis=1) |
|
|
|
|
x_obstacle[:,None], |
|
|
|
|
self.prev_a], axis=1) |
|
|
|
|
self.run() |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -358,6 +367,8 @@ class LongitudinalMpc(): |
|
|
|
|
self.a_solution = self.x_sol[:,2] |
|
|
|
|
self.j_solution = self.u_sol[:,0] |
|
|
|
|
|
|
|
|
|
self.prev_a = interp(T_IDXS + 0.05, T_IDXS, self.a_solution) |
|
|
|
|
|
|
|
|
|
t = sec_since_boot() |
|
|
|
|
if self.solution_status != 0: |
|
|
|
|
if t > self.last_cloudlog_t + 5.0: |
|
|
|
|