Add cost to long plan change for smoother lag comp (#22923)

* add plan changing cost

* fix compile

* set weights

* try this cost

* horizon problem

* looks pretty good

* update refs

* update refs

* smoother plan changes
pull/22940/head
HaraldSchafer 3 years ago committed by GitHub
parent 0674726cf4
commit b3b45c8d29
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 29
      selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
  2. 2
      selfdrive/test/longitudinal_maneuvers/test_longitudinal.py
  3. 2
      selfdrive/test/process_replay/ref_commit

@ -24,15 +24,17 @@ SOURCES = ['lead0', 'lead1', 'cruise']
X_DIM = 3
U_DIM = 1
COST_E_DIM = 4
PARAM_DIM= 4
COST_E_DIM = 5
COST_DIM = COST_E_DIM + 1
CONSTR_DIM = 4
X_EGO_OBSTACLE_COST = 3.
V_EGO_COST = 0.
X_EGO_COST = 0.
V_EGO_COST = 0.
A_EGO_COST = 0.
J_EGO_COST = 10.
J_EGO_COST = 5.0
A_CHANGE_COST = .5
DANGER_ZONE_COST = 100.
CRASH_DISTANCE = .5
LIMIT_COST = 1e6
@ -85,7 +87,8 @@ def gen_long_model():
x_obstacle = SX.sym('x_obstacle')
a_min = SX.sym('a_min')
a_max = SX.sym('a_max')
model.p = vertcat(a_min, a_max, x_obstacle)
prev_a = SX.sym('prev_a')
model.p = vertcat(a_min, a_max, x_obstacle, prev_a)
# dynamics model
f_expl = vertcat(v_ego, a_ego, j_ego)
@ -118,6 +121,7 @@ def gen_long_mpc_solver():
a_min, a_max = ocp.model.p[0], ocp.model.p[1]
x_obstacle = ocp.model.p[2]
prev_a = ocp.model.p[3]
ocp.cost.yref = np.zeros((COST_DIM, ))
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
@ -132,6 +136,7 @@ def gen_long_mpc_solver():
x_ego,
v_ego,
a_ego,
20*(a_ego - prev_a),
j_ego]
ocp.model.cost_y_expr = vertcat(*costs)
ocp.model.cost_y_expr_e = vertcat(*costs[:-1])
@ -148,7 +153,7 @@ def gen_long_mpc_solver():
x0 = np.zeros(X_DIM)
ocp.constraints.x0 = x0
ocp.parameter_values = np.array([-1.2, 1.2, 0.0])
ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0])
# We put all constraint cost weights to 0 and only set them at runtime
cost_weights = np.zeros(CONSTR_DIM)
@ -198,6 +203,7 @@ class LongitudinalMpc():
self.solver = AcadosOcpSolverFast('long', N, EXPORT_DIR)
self.v_solution = [0.0 for i in range(N+1)]
self.a_solution = [0.0 for i in range(N+1)]
self.prev_a = self.a_solution
self.j_solution = [0.0 for i in range(N)]
self.yref = np.zeros((N+1, COST_DIM))
for i in range(N):
@ -205,7 +211,7 @@ class LongitudinalMpc():
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
self.x_sol = np.zeros((N+1, X_DIM))
self.u_sol = np.zeros((N,1))
self.params = np.zeros((N+1,3))
self.params = np.zeros((N+1, PARAM_DIM))
for i in range(N+1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.last_cloudlog_t = 0
@ -222,8 +228,9 @@ class LongitudinalMpc():
self.set_weights_for_lead_policy()
def set_weights_for_lead_policy(self):
W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, J_EGO_COST]))
W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, A_CHANGE_COST, J_EGO_COST]))
for i in range(N):
W[4,4] = A_CHANGE_COST * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
self.solver.cost_set(i, 'W', W)
# Setting the slice without the copy make the array not contiguous,
# causing issues with the C interface.
@ -235,7 +242,7 @@ class LongitudinalMpc():
self.solver.cost_set(i, 'Zl', Zl)
def set_weights_for_xva_policy(self):
W = np.asfortranarray(np.diag([0., 10., 1., 10., 1.]))
W = np.asfortranarray(np.diag([0., 10., 1., 10., 0.0, 1.]))
for i in range(N):
self.solver.cost_set(i, 'W', W)
# Setting the slice without the copy make the array not contiguous,
@ -320,6 +327,7 @@ class LongitudinalMpc():
x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle])
self.source = SOURCES[np.argmin(x_obstacles[0])]
self.params[:,2] = np.min(x_obstacles, axis=1)
self.params[:,3] = np.copy(self.prev_a)
self.run()
if (np.any(lead_xv_0[:,0] - self.x_sol[:,0] < CRASH_DISTANCE) and
@ -339,7 +347,8 @@ class LongitudinalMpc():
self.accel_limit_arr[:,1] = 10.
x_obstacle = 1e5*np.ones((N+1))
self.params = np.concatenate([self.accel_limit_arr,
x_obstacle[:,None]], axis=1)
x_obstacle[:,None],
self.prev_a], axis=1)
self.run()
@ -358,6 +367,8 @@ class LongitudinalMpc():
self.a_solution = self.x_sol[:,2]
self.j_solution = self.u_sol[:,0]
self.prev_a = interp(T_IDXS + 0.05, T_IDXS, self.a_solution)
t = sec_since_boot()
if self.solution_status != 0:
if t > self.last_cloudlog_t + 5.0:

@ -62,7 +62,7 @@ maneuvers = [
speed_lead_values=[20., 20., 0.],
prob_lead_values=[0., 1., 1.],
cruise_values=[20., 20., 20.],
breakpoints=[2., 2.01, 8.51],
breakpoints=[2., 2.01, 8.8],
),
Maneuver(
"approach stopped car at 20m/s",

@ -1 +1 @@
8b929f005a01a4207e218510512ae72689dd2565
6540e8c5a765975fd292b1efdef97b2d6391fa9c
Loading…
Cancel
Save