Revert "Online lateral lag learning" (#34974)

Revert "Online lateral lag learning (#34531)"

This reverts commit 1034dbd37c.
pull/34976/head
Kacper Rączy 3 weeks ago committed by GitHub
parent 9cb4d3d75e
commit b4cc9e68d1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 16
      cereal/log.capnp
  2. 1
      cereal/services.py
  3. 1
      common/params_keys.h
  4. 0
      selfdrive/locationd/estimators/__init__.py
  5. 273
      selfdrive/locationd/estimators/lateral_lag.py
  6. 197
      selfdrive/locationd/estimators/vehicle_params.py
  7. 257
      selfdrive/locationd/paramsd.py
  8. 4
      selfdrive/test/process_replay/process_replay.py
  9. 2
      selfdrive/test/process_replay/ref_commit

@ -2278,21 +2278,6 @@ struct LiveTorqueParametersData {
useParams @12 :Bool;
}
struct LiveDelayData {
lateralDelay @0 :Float32;
validBlocks @1 :Int32;
status @2 :Status;
lateralDelayEstimate @3 :Float32;
points @4 :List(Float32);
enum Status {
unestimated @0;
estimated @1;
invalid @2;
}
}
struct LiveMapDataDEPRECATED {
speedLimitValid @0 :Bool;
speedLimit @1 :Float32;
@ -2523,7 +2508,6 @@ struct Event {
gnssMeasurements @91 :GnssMeasurements;
liveParameters @61 :LiveParametersData;
liveTorqueParameters @94 :LiveTorqueParametersData;
liveDelay @146 : LiveDelayData;
cameraOdometry @63 :CameraOdometry;
thumbnail @66: Thumbnail;
onroadEvents @134: List(OnroadEvent);

@ -36,7 +36,6 @@ _services: dict[str, tuple] = {
"errorLogMessage": (True, 0., 1),
"liveCalibration": (True, 4., 4),
"liveTorqueParameters": (True, 4., 1),
"liveDelay": (True, 4., 1),
"androidLog": (True, 0.),
"carState": (True, 100., 10),
"carControl": (True, 100., 10),

@ -71,7 +71,6 @@ inline static std::unordered_map<std::string, uint32_t> keys = {
{"LastPowerDropDetected", CLEAR_ON_MANAGER_START},
{"LastUpdateException", CLEAR_ON_MANAGER_START},
{"LastUpdateTime", PERSISTENT},
{"LiveLag", PERSISTENT},
{"LiveParameters", PERSISTENT},
{"LiveTorqueParameters", PERSISTENT | DONT_LOG},
{"LocationFilterInitialState", PERSISTENT},

@ -1,273 +0,0 @@
import numpy as np
from collections import deque
from functools import partial
import cereal.messaging as messaging
from cereal import log
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 30.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def masked_normalized_cross_correlation(expected_sig, actual_sig, mask):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
n = len(expected_sig) + len(actual_sig) - 1
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points):
self.times = deque(maxlen=num_points)
self.okay = deque(maxlen=num_points)
self.desired = deque(maxlen=num_points)
self.actual = deque(maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t, desired, actual, okay):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self):
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks, block_size, valid_blocks, initial_value):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % block_size
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self):
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return float(np.mean(self.values[valid_block_idx], axis=0).item())
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
def __init__(self, CP, dt,
block_count=BLOCK_NUM, min_valid_block_count=BLOCK_NUM_NEEDED, block_size=BLOCK_SIZE,
window_sec=MOVING_WINDOW_SEC, okay_window_sec=MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec=MIN_RECOVERY_BUFFER_SEC,
min_vego=MIN_VEGO, min_yr=MIN_ABS_YAW_RATE, min_ncc=MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0
self.v_ego = 0
self.yaw_rate = 0
self.last_lat_inactive_t = 0
self.last_steering_pressed_t = 0
self.last_steering_saturated_t = 0
self.last_estimate_t = 0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag, valid_blocks):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid, debug=False):
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
estimated_lag = self.block_avg.get()
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None:
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = estimated_lag
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
liveDelay.lateralDelay = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t, which, msg):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
# check if the points are valid overall
if not self.points_valid():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
if (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:])):
return
delay, corr = self.actuator_delay(desired, actual, okay, self.dt)
if corr < self.min_ncc:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def correlation_lags(self, sig_len, dt):
return np.arange(0, sig_len) * dt
def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.):
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask)
# only consider lags from 0 to max_lag
max_lag_samples = int(max_lag / dt)
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr

@ -1,197 +0,0 @@
import numpy as np
import capnp
import cereal.messaging as messaging
from cereal import car, log
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = np.radians(-10), np.radians(10)
ROLL_LOWERED_MAX = np.radians(8)
ROLL_STD_MAX = np.radians(1.5)
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
OFFSET_MAX = 10.0
OFFSET_LOWERED_MAX = 8.0
MIN_ACTIVE_SPEED = 1.0
LOW_ACTIVE_SPEED = 10.0
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
if current_valid:
current_valid = abs(val) < threshold
else:
current_valid = abs(val) < lowered_threshold
return current_valid
class VehicleParamsLearner:
inputs = {'carState', 'liveCalibration', 'livePose'}
def __init__(self, CP: car.CarParams, steer_ratio: float, stiffness_factor: float, angle_offset: float, P_initial: np.ndarray | None = None):
self.kf = CarKalman(GENERATED_DIR)
self.x_initial = CarKalman.initial_x.copy()
self.x_initial[States.STEER_RATIO] = steer_ratio
self.x_initial[States.STIFFNESS] = stiffness_factor
self.x_initial[States.ANGLE_OFFSET] = angle_offset
self.P_initial = P_initial if P_initial is not None else CarKalman.P_initial
self.kf.set_globals(
mass=CP.mass,
rotational_inertia=CP.rotationalInertia,
center_to_front=CP.centerToFront,
center_to_rear=CP.wheelbase - CP.centerToFront,
stiffness_front=CP.tireStiffnessFront,
stiffness_rear=CP.tireStiffnessRear
)
self.min_sr, self.max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
self.calibrator = PoseCalibrator()
self.observed_speed = 0.0
self.observed_yaw_rate = 0.0
self.observed_roll = 0.0
self.avg_offset_valid = True
self.total_offset_valid = True
self.roll_valid = True
self.reset(None)
def reset(self, t: float | None):
self.kf.init_state(self.x_initial, covs=self.P_initial, filter_time=t)
self.angle_offset, self.roll, self.active = np.degrees(self.x_initial[States.ANGLE_OFFSET].item()), 0.0, False
self.avg_angle_offset = self.angle_offset
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == 'livePose':
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
yaw_rate, yaw_rate_std = calibrated_pose.angular_velocity.z, calibrated_pose.angular_velocity.z_std
yaw_rate_valid = msg.angularVelocityDevice.valid
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
if not yaw_rate_valid:
# This is done to bound the yaw rate estimate when localizer values are invalid or calibrating
yaw_rate, yaw_rate_std = 0.0, np.radians(10.0)
self.observed_yaw_rate = yaw_rate
localizer_roll, localizer_roll_std = device_pose.orientation.x, device_pose.orientation.x_std
localizer_roll_std = np.radians(1) if np.isnan(localizer_roll_std) else localizer_roll_std
roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
if roll_valid:
roll = localizer_roll
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
roll_std = 2 * localizer_roll_std
else:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.observed_roll = np.clip(roll, self.observed_roll - ROLL_MAX_DELTA, self.observed_roll + ROLL_MAX_DELTA)
if self.active:
if msg.posenetOK:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[-self.observed_yaw_rate]]),
np.array([np.atleast_2d(yaw_rate_std**2)]))
self.kf.predict_and_observe(t,
ObservationKind.ROAD_ROLL,
np.array([[self.observed_roll]]),
np.array([np.atleast_2d(roll_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
# states in longer routes (especially straight stretches).
stiffness = float(self.kf.x[States.STIFFNESS].item())
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
elif which == 'liveCalibration':
self.calibrator.feed_live_calib(msg)
elif which == 'carState':
steering_angle = msg.steeringAngleDeg
in_linear_region = abs(steering_angle) < 45
self.observed_speed = msg.vEgo
self.active = self.observed_speed > MIN_ACTIVE_SPEED and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[np.radians(steering_angle)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.observed_speed]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.set_filter_time(t) # type: ignore
self.kf.filter.reset_rewind() # type: ignore
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
x = self.kf.x
P = np.sqrt(self.kf.P.diagonal())
if not np.all(np.isfinite(x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
self.reset(self.kf.t)
x = self.kf.x
self.avg_angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item()),
self.avg_angle_offset - MAX_ANGLE_OFFSET_DELTA, self.avg_angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
self.angle_offset - MAX_ANGLE_OFFSET_DELTA, self.angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.roll = np.clip(float(x[States.ROAD_ROLL].item()), self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if self.active and self.observed_speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
# At low speeds, bumping into a curb can cause the yaw rate to be very high
sensors_valid = bool(abs(self.observed_speed * (x[States.YAW_RATE].item() + self.observed_yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
else:
sensors_valid = True
self.avg_offset_valid = check_valid_with_hysteresis(self.avg_offset_valid, self.avg_angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.total_offset_valid = check_valid_with_hysteresis(self.total_offset_valid, self.angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.roll_valid = check_valid_with_hysteresis(self.roll_valid, self.roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
msg.valid = valid
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = float(self.roll)
liveParameters.angleOffsetAverageDeg = float(self.avg_angle_offset)
liveParameters.angleOffsetDeg = float(self.angle_offset)
liveParameters.steerRatioValid = self.min_sr <= liveParameters.steerRatio <= self.max_sr
liveParameters.stiffnessFactorValid = 0.2 <= liveParameters.stiffnessFactor <= 5.0
liveParameters.angleOffsetAverageValid = bool(self.avg_offset_valid)
liveParameters.angleOffsetValid = bool(self.total_offset_valid)
liveParameters.valid = all((
liveParameters.angleOffsetAverageValid,
liveParameters.angleOffsetValid ,
self.roll_valid,
roll_std < ROLL_STD_MAX,
liveParameters.stiffnessFactorValid,
liveParameters.steerRatioValid,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if debug:
liveParameters.debugFilterState = log.LiveParametersData.FilterState.new_message()
liveParameters.debugFilterState.value = x.tolist()
liveParameters.debugFilterState.std = P.tolist()
return msg

@ -2,15 +2,201 @@
import os
import json
import numpy as np
import capnp
import cereal.messaging as messaging
from cereal import car, log
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process
from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.estimators.vehicle_params import VehicleParamsLearner
from openpilot.selfdrive.locationd.estimators.lateral_lag import LateralLagEstimator
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = np.radians(-10), np.radians(10)
ROLL_LOWERED_MAX = np.radians(8)
ROLL_STD_MAX = np.radians(1.5)
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
OFFSET_MAX = 10.0
OFFSET_LOWERED_MAX = 8.0
MIN_ACTIVE_SPEED = 1.0
LOW_ACTIVE_SPEED = 10.0
class VehicleParamsLearner:
def __init__(self, CP: car.CarParams, steer_ratio: float, stiffness_factor: float, angle_offset: float, P_initial: np.ndarray | None = None):
self.kf = CarKalman(GENERATED_DIR)
self.x_initial = CarKalman.initial_x.copy()
self.x_initial[States.STEER_RATIO] = steer_ratio
self.x_initial[States.STIFFNESS] = stiffness_factor
self.x_initial[States.ANGLE_OFFSET] = angle_offset
self.P_initial = P_initial if P_initial is not None else CarKalman.P_initial
self.kf.set_globals(
mass=CP.mass,
rotational_inertia=CP.rotationalInertia,
center_to_front=CP.centerToFront,
center_to_rear=CP.wheelbase - CP.centerToFront,
stiffness_front=CP.tireStiffnessFront,
stiffness_rear=CP.tireStiffnessRear
)
self.min_sr, self.max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
self.calibrator = PoseCalibrator()
self.observed_speed = 0.0
self.observed_yaw_rate = 0.0
self.observed_roll = 0.0
self.avg_offset_valid = True
self.total_offset_valid = True
self.roll_valid = True
self.reset(None)
def reset(self, t: float | None):
self.kf.init_state(self.x_initial, covs=self.P_initial, filter_time=t)
self.angle_offset, self.roll, self.active = np.degrees(self.x_initial[States.ANGLE_OFFSET].item()), 0.0, False
self.avg_angle_offset = self.angle_offset
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == 'livePose':
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
yaw_rate, yaw_rate_std = calibrated_pose.angular_velocity.z, calibrated_pose.angular_velocity.z_std
yaw_rate_valid = msg.angularVelocityDevice.valid
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
if not yaw_rate_valid:
# This is done to bound the yaw rate estimate when localizer values are invalid or calibrating
yaw_rate, yaw_rate_std = 0.0, np.radians(10.0)
self.observed_yaw_rate = yaw_rate
localizer_roll, localizer_roll_std = device_pose.orientation.x, device_pose.orientation.x_std
localizer_roll_std = np.radians(1) if np.isnan(localizer_roll_std) else localizer_roll_std
roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
if roll_valid:
roll = localizer_roll
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
roll_std = 2 * localizer_roll_std
else:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.observed_roll = np.clip(roll, self.observed_roll - ROLL_MAX_DELTA, self.observed_roll + ROLL_MAX_DELTA)
if self.active:
if msg.posenetOK:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[-self.observed_yaw_rate]]),
np.array([np.atleast_2d(yaw_rate_std**2)]))
self.kf.predict_and_observe(t,
ObservationKind.ROAD_ROLL,
np.array([[self.observed_roll]]),
np.array([np.atleast_2d(roll_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
# states in longer routes (especially straight stretches).
stiffness = float(self.kf.x[States.STIFFNESS].item())
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
elif which == 'liveCalibration':
self.calibrator.feed_live_calib(msg)
elif which == 'carState':
steering_angle = msg.steeringAngleDeg
in_linear_region = abs(steering_angle) < 45
self.observed_speed = msg.vEgo
self.active = self.observed_speed > MIN_ACTIVE_SPEED and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[np.radians(steering_angle)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.observed_speed]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.set_filter_time(t) # type: ignore
self.kf.filter.reset_rewind() # type: ignore
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
x = self.kf.x
P = np.sqrt(self.kf.P.diagonal())
if not np.all(np.isfinite(x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
self.reset(self.kf.t)
x = self.kf.x
self.avg_angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item()),
self.avg_angle_offset - MAX_ANGLE_OFFSET_DELTA, self.avg_angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
self.angle_offset - MAX_ANGLE_OFFSET_DELTA, self.angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.roll = np.clip(float(x[States.ROAD_ROLL].item()), self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if self.active and self.observed_speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
# At low speeds, bumping into a curb can cause the yaw rate to be very high
sensors_valid = bool(abs(self.observed_speed * (x[States.YAW_RATE].item() + self.observed_yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
else:
sensors_valid = True
self.avg_offset_valid = check_valid_with_hysteresis(self.avg_offset_valid, self.avg_angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.total_offset_valid = check_valid_with_hysteresis(self.total_offset_valid, self.angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.roll_valid = check_valid_with_hysteresis(self.roll_valid, self.roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
msg.valid = valid
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = float(self.roll)
liveParameters.angleOffsetAverageDeg = float(self.avg_angle_offset)
liveParameters.angleOffsetDeg = float(self.angle_offset)
liveParameters.steerRatioValid = self.min_sr <= liveParameters.steerRatio <= self.max_sr
liveParameters.stiffnessFactorValid = 0.2 <= liveParameters.stiffnessFactor <= 5.0
liveParameters.angleOffsetAverageValid = bool(self.avg_offset_valid)
liveParameters.angleOffsetValid = bool(self.total_offset_valid)
liveParameters.valid = all((
liveParameters.angleOffsetAverageValid,
liveParameters.angleOffsetValid ,
self.roll_valid,
roll_std < ROLL_STD_MAX,
liveParameters.stiffnessFactorValid,
liveParameters.steerRatioValid,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if debug:
liveParameters.debugFilterState = log.LiveParametersData.FilterState.new_message()
liveParameters.debugFilterState.value = x.tolist()
liveParameters.debugFilterState.std = P.tolist()
return msg
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
if current_valid:
current_valid = abs(val) < threshold
else:
current_valid = abs(val) < lowered_threshold
return current_valid
# TODO: Remove this function after few releases (added in 0.9.9)
@ -72,46 +258,22 @@ def retrieve_initial_vehicle_params(params_reader: Params, CP: car.CarParams, re
return steer_ratio, stiffness_factor, angle_offset_deg, p_initial
def retrieve_initial_lag(params_reader: Params, CP: car.CarParams):
last_lag_data = params_reader.get("LiveLag")
last_carparams_data = params_reader.get("CarParamsPrevRoute")
if last_lag_data is not None:
try:
with log.Event.from_bytes(last_lag_data) as last_lag_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
ld = last_lag_msg.liveDelay
if last_CP.carFingerprint != CP.carFingerprint:
raise Exception("Car model mismatch")
lag, valid_blocks = ld.lateralDelayEstimate, ld.validBlocks
return lag, valid_blocks
except Exception as e:
cloudlog.error(f"Failed to retrieve initial lag: {e}")
return None
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
pm = messaging.PubMaster(['liveParameters', 'liveDelay'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState', 'controlsState', 'carControl'], poll='livePose')
pm = messaging.PubMaster(['liveParameters'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState'], poll='livePose')
params_reader = Params()
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
migrate_cached_vehicle_params_if_needed(params_reader)
steer_ratio, stiffness_factor, angle_offset_deg, p_initial = retrieve_initial_vehicle_params(params_reader, CP, REPLAY, DEBUG)
params_learner = VehicleParamsLearner(CP, steer_ratio, stiffness_factor, np.radians(angle_offset_deg), p_initial)
lag_learner = LateralLagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
if (initial_lag_params := retrieve_initial_lag(params_reader, CP)) is not None:
lag, valid_blocks = initial_lag_params
lag_learner.reset(lag, valid_blocks)
steer_ratio, stiffness_factor, angle_offset_deg, pInitial = retrieve_initial_vehicle_params(params_reader, CP, REPLAY, DEBUG)
learner = VehicleParamsLearner(CP, steer_ratio, stiffness_factor, np.radians(angle_offset_deg), pInitial)
while True:
sm.update()
@ -119,30 +281,17 @@ def main():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
if which in params_learner.inputs:
params_learner.handle_log(t, which, sm[which])
if which in lag_learner.inputs:
lag_learner.handle_log(t, which, sm[which])
lag_learner.update_points()
learner.handle_log(t, which, sm[which])
params_msg_dat, lag_msg_dat = None, None
if sm.updated['livePose']:
params_msg = params_learner.get_msg(sm.all_checks(), debug=DEBUG)
params_msg_dat = params_msg.to_bytes()
pm.send('liveParameters', params_msg_dat)
# 4Hz driven by livePose
if sm.frame % 5 == 0:
lag_learner.update_estimate()
lag_msg = lag_learner.get_msg(sm.all_checks(), DEBUG)
lag_msg_dat = lag_msg.to_bytes()
pm.send('liveDelay', lag_msg_dat)
if sm.frame % 1200 == 0: # cache every 60 seconds
if params_msg_dat is not None:
params_reader.put_nonblocking("LiveParameters", params_msg_dat)
if lag_msg_dat is not None:
params_reader.put_nonblocking("LiveLag", lag_msg_dat)
msg = learner.get_msg(sm.all_checks(), debug=DEBUG)
msg_dat = msg.to_bytes()
if sm.frame % 1200 == 0: # once a minute
params_reader.put_nonblocking("LiveParameters", msg_dat)
pm.send('liveParameters', msg_dat)
if __name__ == "__main__":
main()

@ -542,8 +542,8 @@ CONFIGS = [
),
ProcessConfig(
proc_name="paramsd",
pubs=["livePose", "liveCalibration", "carState", "carControl", "controlsState"],
subs=["liveParameters", "liveDelay"],
pubs=["livePose", "liveCalibration", "carState"],
subs=["liveParameters"],
ignore=["logMonoTime"],
init_callback=get_car_params_callback,
should_recv_callback=FrequencyBasedRcvCallback("livePose"),

@ -1 +1 @@
0ef214e7f4f06d6d591a2257d254f3c00db6a0e9
887623a18d82088dc5ed9ecdced55eb0d3f718b1
Loading…
Cancel
Save