pull/35700/head
Shane Smiskol 2 weeks ago
parent b944b9e23b
commit b61be47495
  1. 33
      common/filter_simple.py
  2. 15
      estimate_lat_jerk.py

@ -17,6 +17,7 @@ class FirstOrderFilter:
return self.x
# low pass the raw jerk
class JerkEstimator1:
def __init__(self, dt):
self.dt = dt
@ -38,6 +39,7 @@ class JerkEstimator1:
return self.filter.x
# use a kalman filter to estimate jerk
class JerkEstimator2:
def __init__(self, dt):
self.dt = dt
@ -69,34 +71,30 @@ class JerkEstimator2:
class JerkEstimator3:
def __init__(self, dt):
from collections import deque
self.dt = dt
self.prev_x = 0.0
self.initialized = False
self.filter = FirstOrderFilter(0.0, 0.2, dt, initialized=False)
self._x = 0.0
self.xs = deque(maxlen=int(0.2 / dt))
self._x = 0
@property
def x(self):
return self._x
def update(self, x):
filtered_x = self.filter.update(x)
if not self.initialized:
self.prev_x = filtered_x
self.initialized = True
self._x = (filtered_x - self.prev_x) / self.dt
self.xs.append(x)
if len(self.xs) < 2:
return 0.0
self.prev_x = filtered_x
self._x = (self.xs[-1] - self.xs[0]) / ((len(self.xs) - 1) * self.dt)
return self._x
class JerkEstimator4:
def __init__(self, dt):
from collections import deque
self.dt = dt
self.xs = deque(maxlen=int(0.25 / dt))
self.prev_x = 0.0
self.initialized = False
self.filter = FirstOrderFilter(0.0, 0.2, dt, initialized=False)
self._x = 0
@property
@ -104,9 +102,6 @@ class JerkEstimator4:
return self._x
def update(self, x):
self.xs.append(x)
if len(self.xs) < 2:
return 0.0
self._x = (self.xs[-1] - self.xs[0]) / ((len(self.xs) - 1) * self.dt)
self.filter.update(x)
self._x = (x - self.filter.x) / 0.2
return self._x

@ -16,10 +16,11 @@ j1 = JerkEstimator1(1/20)
j2 = JerkEstimator2(1/100)
j3 = JerkEstimator3(1/20)
j4 = JerkEstimator4(1/20)
j5 = JerkEstimator1(1/100)
accels = []
kf_accels = []
jerks1, jerks2, jerks3, jerks4 = [], [], [], []
jerks1, jerks2, jerks3, jerks4, jerks5 = [], [], [], [], []
lp_updated = False
for msg in lr:
@ -40,22 +41,25 @@ for msg in lr:
roll = sm['liveParameters'].roll
roll_compensated_lateral_accel = (CS.vEgo * yaw_rate) - (math.sin(roll) * ACCELERATION_DUE_TO_GRAVITY)
_j3 = j2.update(roll_compensated_lateral_accel)
_j2 = j2.update(roll_compensated_lateral_accel)
_j5 = j5.update(roll_compensated_lateral_accel)
if lp_updated:
_j1 = j1.update(roll_compensated_lateral_accel)
_j2 = j2.update(roll_compensated_lateral_accel)
_j4 = j3.update(roll_compensated_lateral_accel)
_j3 = j3.update(roll_compensated_lateral_accel)
_j4 = j4.update(roll_compensated_lateral_accel)
lp_updated = False
else:
_j1 = j1.x
_j2 = j2.x
_j3 = j3.x
_j4 = j4.x
_j5 = j5.x
jerks1.append(_j1)
jerks2.append(_j2)
jerks3.append(_j3)
jerks4.append(_j4)
jerks5.append(_j5)
accels.append(roll_compensated_lateral_accel)
print(roll_compensated_lateral_accel)
@ -69,8 +73,9 @@ axs[0].legend()
axs[1].plot(jerks1, label='Jerk Estimator 1')
# axs[1].plot(jerks2, label='Jerk Estimator 2')
axs[1].plot(jerks3, label='Jerk Estimator 3')
# axs[1].plot(jerks3, label='Jerk Estimator 3')
axs[1].plot(jerks4, label='Jerk Estimator 4')
# axs[1].plot(jerks5, label='Jerk Estimator 5')
axs[1].set_ylabel('Lateral Jerk (m/s³)')
axs[1].legend()

Loading…
Cancel
Save