dmonitoringmodeld: clean up data structures (#36624)

* update onnx

* get meta

* start

* cast

* deprecate notready

* more

* line too long

* 2
pull/36514/merge
ZwX1616 19 hours ago committed by GitHub
parent a1795f80dd
commit b778da1d7c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 3
      cereal/log.capnp
  2. 2
      selfdrive/modeld/SConscript
  3. 94
      selfdrive/modeld/dmonitoringmodeld.py
  4. 4
      selfdrive/modeld/models/dmonitoring_model.onnx
  5. 41
      selfdrive/monitoring/helpers.py
  6. 2
      selfdrive/monitoring/test_monitoring.py
  7. 2
      selfdrive/test/process_replay/model_replay.py

@ -2166,7 +2166,8 @@ struct DriverStateV2 {
leftBlinkProb @7 :Float32;
rightBlinkProb @8 :Float32;
sunglassesProb @9 :Float32;
notReadyProb @12 :List(Float32);
phoneProb @13 :Float32;
notReadyProbDEPRECATED @12 :List(Float32);
occludedProbDEPRECATED @10 :Float32;
readyProbDEPRECATED @11 :List(Float32);
}

@ -32,7 +32,7 @@ lenvCython.Program('models/commonmodel_pyx.so', 'models/commonmodel_pyx.pyx', LI
tinygrad_files = ["#"+x for x in glob.glob(env.Dir("#tinygrad_repo").relpath + "/**", recursive=True, root_dir=env.Dir("#").abspath) if 'pycache' not in x]
# Get model metadata
for model_name in ['driving_vision', 'driving_policy']:
for model_name in ['driving_vision', 'driving_policy', 'dmonitoring_model']:
fn = File(f"models/{model_name}").abspath
script_files = [File(Dir("#selfdrive/modeld").File("get_model_metadata.py").abspath)]
cmd = f'python3 {Dir("#selfdrive/modeld").abspath}/get_model_metadata.py {fn}.onnx'

@ -7,7 +7,6 @@ from tinygrad.dtype import dtypes
import math
import time
import pickle
import ctypes
import numpy as np
from pathlib import Path
@ -16,47 +15,16 @@ from cereal.messaging import PubMaster, SubMaster
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.common.swaglog import cloudlog
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics, DM_INPUT_SIZE
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
MODEL_WIDTH, MODEL_HEIGHT = DM_INPUT_SIZE
CALIB_LEN = 3
FEATURE_LEN = 512
OUTPUT_SIZE = 83 + FEATURE_LEN
PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'
# TODO: slice from meta
class DriverStateResult(ctypes.Structure):
_fields_ = [
("face_orientation", ctypes.c_float*3),
("face_position", ctypes.c_float*3),
("face_orientation_std", ctypes.c_float*3),
("face_position_std", ctypes.c_float*3),
("face_prob", ctypes.c_float),
("_unused_a", ctypes.c_float*8),
("left_eye_prob", ctypes.c_float),
("_unused_b", ctypes.c_float*8),
("right_eye_prob", ctypes.c_float),
("left_blink_prob", ctypes.c_float),
("right_blink_prob", ctypes.c_float),
("sunglasses_prob", ctypes.c_float),
("_unused_c", ctypes.c_float),
("_unused_d", ctypes.c_float*4),
("not_ready_prob", ctypes.c_float*2)]
class DMonitoringModelResult(ctypes.Structure):
_fields_ = [
("driver_state_lhd", DriverStateResult),
("driver_state_rhd", DriverStateResult),
("wheel_on_right_prob", ctypes.c_float),
("features", ctypes.c_float*FEATURE_LEN)]
METADATA_PATH = Path(__file__).parent / 'models/dmonitoring_model_metadata.pkl'
class ModelState:
@ -64,11 +32,14 @@ class ModelState:
output: np.ndarray
def __init__(self, cl_ctx):
assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
self.input_shapes = model_metadata['input_shapes']
self.output_slices = model_metadata['output_slices']
self.frame = MonitoringModelFrame(cl_ctx)
self.numpy_inputs = {
'calib': np.zeros((1, CALIB_LEN), dtype=np.float32),
'calib': np.zeros(self.input_shapes['calib'], dtype=np.float32),
}
self.tensor_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
@ -84,9 +55,9 @@ class ModelState:
if TICI:
# The imgs tensors are backed by opencl memory, only need init once
if 'input_img' not in self.tensor_inputs:
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, (1, MODEL_WIDTH*MODEL_HEIGHT), dtype=dtypes.uint8)
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, self.input_shapes['input_img'], dtype=dtypes.uint8)
else:
self.tensor_inputs['input_img'] = Tensor(self.frame.buffer_from_cl(input_img_cl).reshape((1, MODEL_WIDTH*MODEL_HEIGHT)), dtype=dtypes.uint8).realize()
self.tensor_inputs['input_img'] = Tensor(self.frame.buffer_from_cl(input_img_cl).reshape(self.input_shapes['input_img']), dtype=dtypes.uint8).realize()
output = self.model_run(**self.tensor_inputs).contiguous().realize().uop.base.buffer.numpy()
@ -95,31 +66,31 @@ class ModelState:
return output, t2 - t1
def fill_driver_state(msg, ds_result: DriverStateResult):
msg.faceOrientation = list(ds_result.face_orientation)
msg.faceOrientationStd = [math.exp(x) for x in ds_result.face_orientation_std]
msg.facePosition = list(ds_result.face_position[:2])
msg.facePositionStd = [math.exp(x) for x in ds_result.face_position_std[:2]]
msg.faceProb = float(sigmoid(ds_result.face_prob))
msg.leftEyeProb = float(sigmoid(ds_result.left_eye_prob))
msg.rightEyeProb = float(sigmoid(ds_result.right_eye_prob))
msg.leftBlinkProb = float(sigmoid(ds_result.left_blink_prob))
msg.rightBlinkProb = float(sigmoid(ds_result.right_blink_prob))
msg.sunglassesProb = float(sigmoid(ds_result.sunglasses_prob))
msg.notReadyProb = [float(sigmoid(x)) for x in ds_result.not_ready_prob]
def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts: int, execution_time: float, gpu_execution_time: float):
model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(DMonitoringModelResult)).contents
def fill_driver_state(msg, model_output, output_slices, ds_suffix):
face_descs = model_output[output_slices[f'face_descs_{ds_suffix}']]
face_descs_std = face_descs[-6:]
msg.faceOrientation = [float(x) for x in face_descs[:3]]
msg.faceOrientationStd = [math.exp(x) for x in face_descs_std[:3]]
msg.facePosition = [float(x) for x in face_descs[3:5]]
msg.facePositionStd = [math.exp(x) for x in face_descs_std[3:5]]
msg.faceProb = float(sigmoid(model_output[output_slices[f'face_prob_{ds_suffix}']][0]))
msg.leftEyeProb = float(sigmoid(model_output[output_slices[f'left_eye_prob_{ds_suffix}']][0]))
msg.rightEyeProb = float(sigmoid(model_output[output_slices[f'right_eye_prob_{ds_suffix}']][0]))
msg.leftBlinkProb = float(sigmoid(model_output[output_slices[f'left_blink_prob_{ds_suffix}']][0]))
msg.rightBlinkProb = float(sigmoid(model_output[output_slices[f'right_blink_prob_{ds_suffix}']][0]))
msg.sunglassesProb = float(sigmoid(model_output[output_slices[f'sunglasses_prob_{ds_suffix}']][0]))
msg.phoneProb = float(sigmoid(model_output[output_slices[f'using_phone_prob_{ds_suffix}']][0]))
def get_driverstate_packet(model_output: np.ndarray, output_slices: dict[str, slice], frame_id: int, location_ts: int, exec_time: float, gpu_exec_time: float):
msg = messaging.new_message('driverStateV2', valid=True)
ds = msg.driverStateV2
ds.frameId = frame_id
ds.modelExecutionTime = execution_time
ds.gpuExecutionTime = gpu_execution_time
ds.wheelOnRightProb = float(sigmoid(model_result.wheel_on_right_prob))
ds.modelExecutionTime = exec_time
ds.gpuExecutionTime = gpu_exec_time
ds.wheelOnRightProb = float(sigmoid(model_output[output_slices['wheel_on_right']][0]))
ds.rawPredictions = model_output.tobytes() if SEND_RAW_PRED else b''
fill_driver_state(ds.leftDriverData, model_result.driver_state_lhd)
fill_driver_state(ds.rightDriverData, model_result.driver_state_rhd)
fill_driver_state(ds.leftDriverData, model_output, output_slices, 'lhd')
fill_driver_state(ds.rightDriverData, model_output, output_slices, 'rhd')
return msg
@ -140,7 +111,7 @@ def main():
sm = SubMaster(["liveCalibration"])
pm = PubMaster(["driverStateV2"])
calib = np.zeros(CALIB_LEN, dtype=np.float32)
calib = np.zeros(model.numpy_inputs['calib'].size, dtype=np.float32)
model_transform = None
while True:
@ -160,7 +131,8 @@ def main():
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
t2 = time.perf_counter()
pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time))
msg = get_driverstate_packet(model_output, model.output_slices, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time)
pm.send("driverStateV2", msg)
if __name__ == "__main__":

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3a53626ab84757813fb16a1441704f2ae7192bef88c331bdc2415be6981d204f
size 7191776
oid sha256:3446bf8b22e50e47669a25bf32460ae8baf8547037f346753e19ecbfcf6d4e59
size 6954368

@ -37,12 +37,12 @@ class DRIVER_MONITOR_SETTINGS:
self._BLINK_THRESHOLD = 0.865
if HARDWARE.get_device_type() == 'mici':
self._EE_THRESH11 = 0.75
self._PHONE_THRESH = 0.75
else:
self._EE_THRESH11 = 0.4
self._EE_THRESH12 = 15.0
self._EE_MAX_OFFSET1 = 0.06
self._EE_MIN_OFFSET1 = 0.025
self._PHONE_THRESH = 0.4
self._PHONE_THRESH2 = 15.0
self._PHONE_MAX_OFFSET = 0.06
self._PHONE_MIN_OFFSET = 0.025
self._POSE_PITCH_THRESHOLD = 0.3133
self._POSE_PITCH_THRESHOLD_SLACK = 0.3237
@ -84,7 +84,7 @@ class DistractedType:
NOT_DISTRACTED = 0
DISTRACTED_POSE = 1 << 0
DISTRACTED_BLINK = 1 << 1
DISTRACTED_E2E = 1 << 2
DISTRACTED_PHONE = 1 << 2
class DriverPose:
def __init__(self, max_trackable):
@ -142,9 +142,9 @@ class DriverMonitoring:
self.wheelpos_learner = RunningStatFilter()
self.pose = DriverPose(self.settings._POSE_OFFSET_MAX_COUNT)
self.blink = DriverBlink()
self.eev1 = 0.
self.ee1_offseter = RunningStatFilter(max_trackable=self.settings._POSE_OFFSET_MAX_COUNT)
self.ee1_calibrated = False
self.phone_prob = 0.
self.phone_offseter = RunningStatFilter(max_trackable=self.settings._POSE_OFFSET_MAX_COUNT)
self.phone_calibrated = False
self.always_on = always_on
self.distracted_types = []
@ -242,13 +242,13 @@ class DriverMonitoring:
if (self.blink.left + self.blink.right)*0.5 > self.settings._BLINK_THRESHOLD:
distracted_types.append(DistractedType.DISTRACTED_BLINK)
if self.ee1_calibrated:
ee1_dist = self.eev1 > max(min(self.ee1_offseter.filtered_stat.M, self.settings._EE_MAX_OFFSET1), self.settings._EE_MIN_OFFSET1) \
* self.settings._EE_THRESH12
if self.phone_calibrated:
using_phone = self.phone_prob > max(min(self.phone_offseter.filtered_stat.M, self.settings._PHONE_MAX_OFFSET), self.settings._PHONE_MIN_OFFSET) \
* self.settings._PHONE_THRESH2
else:
ee1_dist = self.eev1 > self.settings._EE_THRESH11
if ee1_dist:
distracted_types.append(DistractedType.DISTRACTED_E2E)
using_phone = self.phone_prob > self.settings._PHONE_THRESH
if using_phone:
distracted_types.append(DistractedType.DISTRACTED_PHONE)
return distracted_types
@ -267,8 +267,7 @@ class DriverMonitoring:
self.wheel_on_right = self.wheel_on_right_last
driver_data = driver_state.rightDriverData if self.wheel_on_right else driver_state.leftDriverData
if not all(len(x) > 0 for x in (driver_data.faceOrientation, driver_data.facePosition,
driver_data.faceOrientationStd, driver_data.facePositionStd,
driver_data.notReadyProb)):
driver_data.faceOrientationStd, driver_data.facePositionStd)):
return
self.face_detected = driver_data.faceProb > self.settings._FACE_THRESHOLD
@ -284,10 +283,10 @@ class DriverMonitoring:
* (driver_data.sunglassesProb < self.settings._SG_THRESHOLD)
self.blink.right = driver_data.rightBlinkProb * (driver_data.rightEyeProb > self.settings._EYE_THRESHOLD) \
* (driver_data.sunglassesProb < self.settings._SG_THRESHOLD)
self.eev1 = driver_data.notReadyProb[0]
self.phone_prob = driver_data.phoneProb
self.distracted_types = self._get_distracted_types()
self.driver_distracted = (DistractedType.DISTRACTED_E2E in self.distracted_types or DistractedType.DISTRACTED_POSE in self.distracted_types
self.driver_distracted = (DistractedType.DISTRACTED_PHONE in self.distracted_types or DistractedType.DISTRACTED_POSE in self.distracted_types
or DistractedType.DISTRACTED_BLINK in self.distracted_types) \
and driver_data.faceProb > self.settings._FACE_THRESHOLD and self.pose.low_std
self.driver_distraction_filter.update(self.driver_distracted)
@ -297,11 +296,11 @@ class DriverMonitoring:
if self.face_detected and car_speed > self.settings._POSE_CALIB_MIN_SPEED and self.pose.low_std and (not op_engaged or not self.driver_distracted):
self.pose.pitch_offseter.push_and_update(self.pose.pitch)
self.pose.yaw_offseter.push_and_update(self.pose.yaw)
self.ee1_offseter.push_and_update(self.eev1)
self.phone_offseter.push_and_update(self.phone_prob)
self.pose.calibrated = self.pose.pitch_offseter.filtered_stat.n > self.settings._POSE_OFFSET_MIN_COUNT and \
self.pose.yaw_offseter.filtered_stat.n > self.settings._POSE_OFFSET_MIN_COUNT
self.ee1_calibrated = self.ee1_offseter.filtered_stat.n > self.settings._POSE_OFFSET_MIN_COUNT
self.phone_calibrated = self.phone_offseter.filtered_stat.n > self.settings._POSE_OFFSET_MIN_COUNT
if self.face_detected and not self.driver_distracted:
if model_std_max > self.settings._DCAM_UNCERTAIN_ALERT_THRESHOLD:

@ -25,7 +25,7 @@ def make_msg(face_detected, distracted=False, model_uncertain=False):
ds.leftDriverData.faceOrientationStd = [1.*model_uncertain, 1.*model_uncertain, 1.*model_uncertain]
ds.leftDriverData.facePositionStd = [1.*model_uncertain, 1.*model_uncertain]
# TODO: test both separately when e2e is used
ds.leftDriverData.notReadyProb = [0., 0.]
ds.leftDriverData.phoneProb = 0.
return ds

@ -77,7 +77,7 @@ def generate_report(proposed, master, tmp, commit):
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceProb), "leftDriverData.faceProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceOrientation, 0), "leftDriverData.faceOrientation0"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.leftBlinkProb), "leftDriverData.leftBlinkProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.notReadyProb, 0), "leftDriverData.notReadyProb0"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.phoneProb), "leftDriverData.phoneProb"),
(lambda x: get_idx_if_non_empty(x.rightDriverData.faceProb), "rightDriverData.faceProb"),
], "driverStateV2")

Loading…
Cancel
Save