|  |  | @ -8,7 +8,7 @@ from selfdrive.locationd.kalman.helpers.sympy_helpers import (euler_rotate, | 
			
		
	
		
		
			
				
					
					|  |  |  |                                                               quat_matrix_r, |  |  |  |                                                               quat_matrix_r, | 
			
		
	
		
		
			
				
					
					|  |  |  |                                                               quat_rotate) |  |  |  |                                                               quat_rotate) | 
			
		
	
		
		
			
				
					
					|  |  |  | from selfdrive.swaglog import cloudlog |  |  |  | from selfdrive.swaglog import cloudlog | 
			
		
	
		
		
			
				
					
					|  |  |  | #from laika.constants import EARTH_GM |  |  |  | 
 | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | EARTH_GM = 3.986005e14  # m^3/s^2 (gravitational constant * mass of earth) |  |  |  | EARTH_GM = 3.986005e14  # m^3/s^2 (gravitational constant * mass of earth) | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
	
		
		
			
				
					|  |  | @ -44,7 +44,6 @@ class LiveKalman(): | 
			
		
	
		
		
			
				
					
					|  |  |  |                         0, 0, 0, |  |  |  |                         0, 0, 0, | 
			
		
	
		
		
			
				
					
					|  |  |  |                         0, 0, 0]) |  |  |  |                         0, 0, 0]) | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  |   # state covariance |  |  |  |   # state covariance | 
			
		
	
		
		
			
				
					
					|  |  |  |   initial_P_diag = np.array([10000**2, 10000**2, 10000**2, |  |  |  |   initial_P_diag = np.array([10000**2, 10000**2, 10000**2, | 
			
		
	
		
		
			
				
					
					|  |  |  |                              10**2, 10**2, 10**2, |  |  |  |                              10**2, 10**2, 10**2, | 
			
		
	
	
		
		
			
				
					|  |  | @ -60,10 +59,10 @@ class LiveKalman(): | 
			
		
	
		
		
			
				
					
					|  |  |  |                0.0**2, 0.0**2, 0.0**2, |  |  |  |                0.0**2, 0.0**2, 0.0**2, | 
			
		
	
		
		
			
				
					
					|  |  |  |                0.0**2, 0.0**2, 0.0**2, |  |  |  |                0.0**2, 0.0**2, 0.0**2, | 
			
		
	
		
		
			
				
					
					|  |  |  |                0.1**2, 0.1**2, 0.1**2, |  |  |  |                0.1**2, 0.1**2, 0.1**2, | 
			
		
	
		
		
			
				
					
					|  |  |  |                (0.005/100)**2, (0.005/100)**2, (0.005/100)**2, |  |  |  |                (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2, | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                (0.02/100)**2, |  |  |  |                (0.02 / 100)**2, | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  |                3**2, 3**2, 3**2, |  |  |  |                3**2, 3**2, 3**2, | 
			
		
	
		
		
			
				
					
					|  |  |  |                (0.05/60)**2, (0.05/60)**2, (0.05/60)**2]) |  |  |  |                (0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2]) | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |   @staticmethod |  |  |  |   @staticmethod | 
			
		
	
		
		
			
				
					
					|  |  |  |   def generate_code(): |  |  |  |   def generate_code(): | 
			
		
	
	
		
		
			
				
					|  |  | @ -73,16 +72,16 @@ class LiveKalman(): | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_sym = sp.MatrixSymbol('state', dim_state, 1) |  |  |  |     state_sym = sp.MatrixSymbol('state', dim_state, 1) | 
			
		
	
		
		
			
				
					
					|  |  |  |     state = sp.Matrix(state_sym) |  |  |  |     state = sp.Matrix(state_sym) | 
			
		
	
		
		
			
				
					
					|  |  |  |     x,y,z = state[States.ECEF_POS,:] |  |  |  |     x, y, z = state[States.ECEF_POS, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     q = state[States.ECEF_ORIENTATION,:] |  |  |  |     q = state[States.ECEF_ORIENTATION, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     v = state[States.ECEF_VELOCITY,:] |  |  |  |     v = state[States.ECEF_VELOCITY, :] | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     vx, vy, vz = v |  |  |  |     vx, vy, vz = v | 
			
		
	
		
		
			
				
					
					|  |  |  |     omega = state[States.ANGULAR_VELOCITY,:] |  |  |  |     omega = state[States.ANGULAR_VELOCITY, :] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     vroll, vpitch, vyaw = omega |  |  |  |     vroll, vpitch, vyaw = omega | 
			
		
	
		
		
			
				
					
					|  |  |  |     roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS,:] |  |  |  |     roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     odo_scale = state[16,:] |  |  |  |     odo_scale = state[16, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     acceleration = state[States.ACCELERATION,:] |  |  |  |     acceleration = state[States.ACCELERATION, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     imu_angles= state[States.IMU_OFFSET,:] |  |  |  |     imu_angles = state[States.IMU_OFFSET, :] | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     dt = sp.Symbol('dt') |  |  |  |     dt = sp.Symbol('dt') | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
	
		
		
			
				
					|  |  | @ -93,104 +92,97 @@ class LiveKalman(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     # A New Quaternion-Based Kalman Filter for |  |  |  |     # A New Quaternion-Based Kalman Filter for | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Real-Time Attitude Estimation Using the Two-Step |  |  |  |     # Real-Time Attitude Estimation Using the Two-Step | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Geometrically-Intuitive Correction Algorithm |  |  |  |     # Geometrically-Intuitive Correction Algorithm | 
			
		
	
		
		
			
				
					
					|  |  |  |     A = 0.5*sp.Matrix([[0, -vroll, -vpitch, -vyaw], |  |  |  |     A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                   [vroll, 0, vyaw, -vpitch], |  |  |  |                          [vroll, 0, vyaw, -vpitch], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                   [vpitch, -vyaw, 0, vroll], |  |  |  |                          [vpitch, -vyaw, 0, vroll], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                   [vyaw, vpitch, -vroll, 0]]) |  |  |  |                          [vyaw, vpitch, -vroll, 0]]) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     q_dot = A * q |  |  |  |     q_dot = A * q | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Time derivative of the state as a function of state |  |  |  |     # Time derivative of the state as a function of state | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_dot = sp.Matrix(np.zeros((dim_state, 1))) |  |  |  |     state_dot = sp.Matrix(np.zeros((dim_state, 1))) | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_dot[States.ECEF_POS,:] = v |  |  |  |     state_dot[States.ECEF_POS, :] = v | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     state_dot[States.ECEF_ORIENTATION,:] = q_dot |  |  |  |     state_dot[States.ECEF_ORIENTATION, :] = q_dot | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     state_dot[States.ECEF_VELOCITY,0] = quat_rot * acceleration |  |  |  |     state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Basic descretization, 1st order intergrator |  |  |  |     # Basic descretization, 1st order intergrator | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Can be pretty bad if dt is big |  |  |  |     # Can be pretty bad if dt is big | 
			
		
	
		
		
			
				
					
					|  |  |  |     f_sym = state + dt*state_dot |  |  |  |     f_sym = state + dt * state_dot | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_err_sym = sp.MatrixSymbol('state_err',dim_state_err,1) |  |  |  |     state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1) | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     state_err = sp.Matrix(state_err_sym) |  |  |  |     state_err = sp.Matrix(state_err_sym) | 
			
		
	
		
		
			
				
					
					|  |  |  |     quat_err = state_err[States.ECEF_ORIENTATION_ERR,:] |  |  |  |     quat_err = state_err[States.ECEF_ORIENTATION_ERR, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     v_err = state_err[States.ECEF_VELOCITY_ERR,:] |  |  |  |     v_err = state_err[States.ECEF_VELOCITY_ERR, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     omega_err = state_err[States.ANGULAR_VELOCITY_ERR,:] |  |  |  |     omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     acceleration_err = state_err[States.ACCELERATION_ERR,:] |  |  |  |     acceleration_err = state_err[States.ACCELERATION_ERR, :] | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Time derivative of the state error as a function of state error and state |  |  |  |     # Time derivative of the state error as a function of state error and state | 
			
		
	
		
		
			
				
					
					|  |  |  |     quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) |  |  |  |     quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2]) | 
			
		
	
		
		
			
				
					
					|  |  |  |     q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) |  |  |  |     q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err) | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) |  |  |  |     state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1))) | 
			
		
	
		
		
			
				
					
					|  |  |  |     state_err_dot[States.ECEF_POS_ERR,:] = v_err |  |  |  |     state_err_dot[States.ECEF_POS_ERR, :] = v_err | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     state_err_dot[States.ECEF_ORIENTATION_ERR,:] = q_err_dot |  |  |  |     state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     state_err_dot[States.ECEF_VELOCITY_ERR,:] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) |  |  |  |     state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     f_err_sym = state_err + dt*state_err_dot |  |  |  |     f_err_sym = state_err + dt * state_err_dot | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Observation matrix modifier |  |  |  |     # Observation matrix modifier | 
			
		
	
		
		
			
				
					
					|  |  |  |     H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) |  |  |  |     H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err))) | 
			
		
	
		
		
			
				
					
					|  |  |  |     H_mod_sym[0:3, 0:3] = np.eye(3) |  |  |  |     H_mod_sym[0:3, 0:3] = np.eye(3) | 
			
		
	
		
		
			
				
					
					|  |  |  |     H_mod_sym[3:7,3:6] = 0.5*quat_matrix_r(state[3:7])[:,1:] |  |  |  |     H_mod_sym[3:7, 3:6] = 0.5 * quat_matrix_r(state[3:7])[:, 1:] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     H_mod_sym[7:, 6:] = np.eye(dim_state-7) |  |  |  |     H_mod_sym[7:, 6:] = np.eye(dim_state - 7) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     # these error functions are defined so that say there |  |  |  |     # these error functions are defined so that say there | 
			
		
	
		
		
			
				
					
					|  |  |  |     # is a nominal x and true x: |  |  |  |     # is a nominal x and true x: | 
			
		
	
		
		
			
				
					
					|  |  |  |     # true x = err_function(nominal x, delta x) |  |  |  |     # true x = err_function(nominal x, delta x) | 
			
		
	
		
		
			
				
					
					|  |  |  |     # delta x = inv_err_function(nominal x, true x) |  |  |  |     # delta x = inv_err_function(nominal x, true x) | 
			
		
	
		
		
			
				
					
					|  |  |  |     nom_x = sp.MatrixSymbol('nom_x',dim_state,1) |  |  |  |     nom_x = sp.MatrixSymbol('nom_x', dim_state, 1) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     true_x = sp.MatrixSymbol('true_x',dim_state,1) |  |  |  |     true_x = sp.MatrixSymbol('true_x', dim_state, 1) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     delta_x = sp.MatrixSymbol('delta_x',dim_state_err,1) |  |  |  |     delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     err_function_sym = sp.Matrix(np.zeros((dim_state,1))) |  |  |  |     err_function_sym = sp.Matrix(np.zeros((dim_state, 1))) | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     delta_quat = sp.Matrix(np.ones((4))) |  |  |  |     delta_quat = sp.Matrix(np.ones((4))) | 
			
		
	
		
		
			
				
					
					|  |  |  |     delta_quat[1:,:] = sp.Matrix(0.5*delta_x[3:6,:]) |  |  |  |     delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[3:6, :]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     err_function_sym[0:3,:] = sp.Matrix(nom_x[0:3,:] + delta_x[0:3,:]) |  |  |  |     err_function_sym[0:3, :] = sp.Matrix(nom_x[0:3, :] + delta_x[0:3, :]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     err_function_sym[3:7,0] = quat_matrix_r(nom_x[3:7,0])*delta_quat |  |  |  |     err_function_sym[3:7, 0] = quat_matrix_r(nom_x[3:7, 0]) * delta_quat | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     err_function_sym[7:,:] = sp.Matrix(nom_x[7:,:] + delta_x[6:,:]) |  |  |  |     err_function_sym[7:, :] = sp.Matrix(nom_x[7:, :] + delta_x[6:, :]) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err,1))) |  |  |  |     inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1))) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     inv_err_function_sym[0:3,0] = sp.Matrix(-nom_x[0:3,0] + true_x[0:3,0]) |  |  |  |     inv_err_function_sym[0:3, 0] = sp.Matrix(-nom_x[0:3, 0] + true_x[0:3, 0]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     delta_quat = quat_matrix_r(nom_x[3:7,0]).T*true_x[3:7,0] |  |  |  |     delta_quat = quat_matrix_r(nom_x[3:7, 0]).T * true_x[3:7, 0] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     inv_err_function_sym[3:6,0] = sp.Matrix(2*delta_quat[1:]) |  |  |  |     inv_err_function_sym[3:6, 0] = sp.Matrix(2 * delta_quat[1:]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     inv_err_function_sym[6:,0] = sp.Matrix(-nom_x[7:,0] + true_x[7:,0]) |  |  |  |     inv_err_function_sym[6:, 0] = sp.Matrix(-nom_x[7:, 0] + true_x[7:, 0]) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     eskf_params = [[err_function_sym, nom_x, delta_x], |  |  |  |     eskf_params = [[err_function_sym, nom_x, delta_x], | 
			
		
	
		
		
			
				
					
					|  |  |  |                   [inv_err_function_sym, nom_x, true_x], |  |  |  |                    [inv_err_function_sym, nom_x, true_x], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                   H_mod_sym, f_err_sym, state_err_sym] |  |  |  |                    H_mod_sym, f_err_sym, state_err_sym] | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     # |  |  |  |     # | 
			
		
	
		
		
			
				
					
					|  |  |  |     # Observation functions |  |  |  |     # Observation functions | 
			
		
	
		
		
			
				
					
					|  |  |  |     # |  |  |  |     # | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  |     imu_rot = euler_rotate(*imu_angles) |  |  |  |     imu_rot = euler_rotate(*imu_angles) | 
			
		
	
		
		
			
				
					
					|  |  |  |     h_gyro_sym = imu_rot*sp.Matrix([vroll + roll_bias, |  |  |  |     h_gyro_sym = imu_rot * sp.Matrix([vroll + roll_bias, | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                                   vpitch + pitch_bias, |  |  |  |                                       vpitch + pitch_bias, | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                                   vyaw + yaw_bias]) |  |  |  |                                       vyaw + yaw_bias]) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     pos = sp.Matrix([x, y, z]) |  |  |  |     pos = sp.Matrix([x, y, z]) | 
			
		
	
		
		
			
				
					
					|  |  |  |     gravity = quat_rot.T * ((EARTH_GM/((x**2 + y**2 + z**2)**(3.0/2.0)))*pos) |  |  |  |     gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     h_acc_sym = imu_rot*(gravity + acceleration) |  |  |  |     h_acc_sym = imu_rot * (gravity + acceleration) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     h_phone_rot_sym = sp.Matrix([vroll, |  |  |  |     h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                                 vpitch, |  |  |  | 
 | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                                 vyaw]) |  |  |  |     speed = sp.sqrt(vx**2 + vy**2 + vz**2) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     speed = vx**2 + vy**2 + vz**2 |  |  |  |     h_speed_sym = sp.Matrix([speed * odo_scale]) | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     h_speed_sym = sp.Matrix([sp.sqrt(speed)*odo_scale]) |  |  |  |  | 
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     h_pos_sym = sp.Matrix([x, y, z]) |  |  |  |     h_pos_sym = sp.Matrix([x, y, z]) | 
			
		
	
		
		
			
				
					
					|  |  |  |     h_imu_frame_sym = sp.Matrix(imu_angles) |  |  |  |     h_imu_frame_sym = sp.Matrix(imu_angles) | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     h_relative_motion = sp.Matrix(quat_rot.T * v) |  |  |  |     h_relative_motion = sp.Matrix(quat_rot.T * v) | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  |  | 
			
		
	
		
		
			
				
					
					|  |  |  |     obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None], |  |  |  |     obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None], | 
			
		
	
		
		
			
				
					
					|  |  |  |               [h_gyro_sym, ObservationKind.PHONE_GYRO, None], |  |  |  |                [h_gyro_sym, ObservationKind.PHONE_GYRO, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_phone_rot_sym, ObservationKind.NO_ROT, None], |  |  |  |                [h_phone_rot_sym, ObservationKind.NO_ROT, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_acc_sym, ObservationKind.PHONE_ACCEL, None], |  |  |  |                [h_acc_sym, ObservationKind.PHONE_ACCEL, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_pos_sym, ObservationKind.ECEF_POS, None], |  |  |  |                [h_pos_sym, ObservationKind.ECEF_POS, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None], |  |  |  |                [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None], |  |  |  |                [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None], | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |               [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]] |  |  |  |                [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]] | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params) |  |  |  |     gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params) | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
	
		
		
			
				
					|  |  | @ -200,7 +192,7 @@ class LiveKalman(): | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), |  |  |  |     self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2), | 
			
		
	
		
		
			
				
					
					|  |  |  |                       ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]), |  |  |  |                       ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]), | 
			
		
	
		
		
			
				
					
					|  |  |  |                       ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5*2]), |  |  |  |                       ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]), | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |                       ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]), |  |  |  |                       ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]), | 
			
		
	
		
		
			
				
					
					|  |  |  |                       ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]), |  |  |  |                       ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]), | 
			
		
	
		
		
			
				
					
					|  |  |  |                       ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]), |  |  |  |                       ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]), | 
			
		
	
	
		
		
			
				
					|  |  | 
 |