|
|
|
@ -64,7 +64,7 @@ def normalize(img_pts, intrinsics=eon_intrinsics): |
|
|
|
|
input_shape = img_pts.shape |
|
|
|
|
img_pts = np.atleast_2d(img_pts) |
|
|
|
|
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1)))) |
|
|
|
|
img_pts_normalized = intrinsics_inv.dot(img_pts.T).T |
|
|
|
|
img_pts_normalized = img_pts.dot(intrinsics_inv.T) |
|
|
|
|
img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan |
|
|
|
|
return img_pts_normalized[:,:2].reshape(input_shape) |
|
|
|
|
|
|
|
|
@ -76,7 +76,7 @@ def denormalize(img_pts, intrinsics=eon_intrinsics): |
|
|
|
|
input_shape = img_pts.shape |
|
|
|
|
img_pts = np.atleast_2d(img_pts) |
|
|
|
|
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0],1)))) |
|
|
|
|
img_pts_denormalized = intrinsics.dot(img_pts.T).T |
|
|
|
|
img_pts_denormalized = img_pts.dot(intrinsics.T) |
|
|
|
|
img_pts_denormalized[img_pts_denormalized[:,0] > W] = np.nan |
|
|
|
|
img_pts_denormalized[img_pts_denormalized[:,0] < 0] = np.nan |
|
|
|
|
img_pts_denormalized[img_pts_denormalized[:,1] > H] = np.nan |
|
|
|
|