Notre Dame model in tinygrad (#34324)

* release model: 6f23a03f-486b-4d3e-a314-19d149644c7c/700

* old style model in tinygrad

* fix desire

* tg hack

* 20Hz

* no gas probs

* No gas here

* better indexing

---------

Co-authored-by: Yassine Yousfi <yyousfi1@binghamton.edu>
pull/34336/head
Harald Schäfer 4 months ago committed by GitHub
parent b1170c98c1
commit c8264cbf2c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 20
      selfdrive/modeld/constants.py
  2. 20
      selfdrive/modeld/fill_model_msg.py
  3. 28
      selfdrive/modeld/modeld.py
  4. 6
      selfdrive/modeld/models/commonmodel.cc
  5. 4
      selfdrive/modeld/models/supercombo.onnx
  6. 2
      selfdrive/modeld/parse_model_outputs.py
  7. 2
      selfdrive/test/process_replay/model_replay.py
  8. 2
      tinygrad_repo

@ -16,7 +16,6 @@ class ModelConstants:
MODEL_FREQ = 20
FEATURE_LEN = 512
FULL_HISTORY_BUFFER_LEN = 99
HISTORY_BUFFER_LEN = 24
DESIRE_LEN = 8
TRAFFIC_CONVENTION_LEN = 2
LAT_PLANNER_STATE_LEN = 4
@ -73,14 +72,13 @@ class Plan:
class Meta:
ENGAGED = slice(0, 1)
# next 2, 4, 6, 8, 10 seconds
GAS_DISENGAGE = slice(1, 31, 6)
BRAKE_DISENGAGE = slice(2, 31, 6)
STEER_OVERRIDE = slice(3, 31, 6)
HARD_BRAKE_3 = slice(4, 31, 6)
HARD_BRAKE_4 = slice(5, 31, 6)
HARD_BRAKE_5 = slice(6, 31, 6)
GAS_DISENGAGE = slice(1, 36, 7)
BRAKE_DISENGAGE = slice(2, 36, 7)
STEER_OVERRIDE = slice(3, 36, 7)
HARD_BRAKE_3 = slice(4, 36, 7)
HARD_BRAKE_4 = slice(5, 36, 7)
HARD_BRAKE_5 = slice(6, 36, 7)
GAS_PRESS = slice(7, 36, 7)
# next 0, 2, 4, 6, 8, 10 seconds
GAS_PRESS = slice(31, 55, 4)
BRAKE_PRESS = slice(32, 55, 4)
LEFT_BLINKER = slice(33, 55, 4)
RIGHT_BLINKER = slice(34, 55, 4)
LEFT_BLINKER = slice(36, 48, 2)
RIGHT_BLINKER = slice(37, 48, 2)

@ -3,21 +3,11 @@ import capnp
import numpy as np
from cereal import log
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
from openpilot.selfdrive.controls.lib.drive_helpers import MIN_SPEED
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
ConfidenceClass = log.ModelDataV2.ConfidenceClass
def curv_from_psis(psi_target, psi_rate, vego, delay):
vego = np.clip(vego, MIN_SPEED, np.inf)
curv_from_psi = psi_target / (vego * delay) # epsilon to prevent divide-by-zero
return 2*curv_from_psi - psi_rate / vego
def get_curvature_from_plan(plan, vego, delay):
psi_target = np.interp(delay, ModelConstants.T_IDXS, plan[:, Plan.T_FROM_CURRENT_EULER][:, 2])
psi_rate = plan[:, Plan.ORIENTATION_RATE][0, 2]
return curv_from_psis(psi_target, psi_rate, vego, delay)
class PublishState:
def __init__(self):
@ -75,8 +65,6 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
extended_msg.valid = valid
base_msg.valid = valid
desired_curv = float(get_curvature_from_plan(net_output_data['plan'][0], v_ego, delay))
driving_model_data = base_msg.drivingModelData
driving_model_data.frameId = vipc_frame_id
@ -85,7 +73,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
driving_model_data.modelExecutionTime = model_execution_time
action = driving_model_data.action
action.desiredCurvature = desired_curv
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
modelV2 = extended_msg.modelV2
modelV2.frameId = vipc_frame_id
@ -120,7 +108,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
# lateral planning
action = modelV2.action
action.desiredCurvature = desired_curv
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
# times at X_IDXS according to model plan
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
@ -181,8 +169,8 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
disengage_predictions.gasPressProbs = net_output_data['meta'][0,Meta.GAS_PRESS].tolist()
disengage_predictions.brakePressProbs = net_output_data['meta'][0,Meta.BRAKE_PRESS].tolist()
#disengage_predictions.gasPressProbs = net_output_data['meta'][0,Meta.GAS_PRESS].tolist()
#disengage_predictions.brakePressProbs = net_output_data['meta'][0,Meta.BRAKE_PRESS].tolist()
publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]

@ -59,14 +59,14 @@ class ModelState:
def __init__(self, context: CLContext):
self.frames = {'input_imgs': DrivingModelFrame(context), 'big_input_imgs': DrivingModelFrame(context)}
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.full_features_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32)
self.desire_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.DESIRE_LEN), dtype=np.float32)
# img buffers are managed in openCL transform code
self.numpy_inputs = {
'desire': np.zeros((1, (ModelConstants.HISTORY_BUFFER_LEN+1), ModelConstants.DESIRE_LEN), dtype=np.float32),
'desire': np.zeros((1, (ModelConstants.FULL_HISTORY_BUFFER_LEN+1), ModelConstants.DESIRE_LEN), dtype=np.float32),
'traffic_convention': np.zeros((1, ModelConstants.TRAFFIC_CONVENTION_LEN), dtype=np.float32),
'features_buffer': np.zeros((1, ModelConstants.HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32),
'lateral_control_params': np.zeros((1, ModelConstants.LATERAL_CONTROL_PARAMS_LEN), dtype=np.float32),
'prev_desired_curv': np.zeros((1, (ModelConstants.FULL_HISTORY_BUFFER_LEN+1), ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32),
'features_buffer': np.zeros((1, ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32),
}
with open(METADATA_PATH, 'rb') as f:
@ -98,11 +98,11 @@ class ModelState:
new_desire = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.prev_desire[:] = inputs['desire']
self.desire_20Hz[:-1] = self.desire_20Hz[1:]
self.desire_20Hz[-1] = new_desire
self.numpy_inputs['desire'][:] = self.desire_20Hz.reshape((1,25,4,-1)).max(axis=2)
self.numpy_inputs['desire'][0,:-1] = self.numpy_inputs['desire'][0,1:]
self.numpy_inputs['desire'][0,-1] = new_desire
self.numpy_inputs['traffic_convention'][:] = inputs['traffic_convention']
self.numpy_inputs['lateral_control_params'][:] = inputs['lateral_control_params']
imgs_cl = {'input_imgs': self.frames['input_imgs'].prepare(buf, transform.flatten()),
'big_input_imgs': self.frames['big_input_imgs'].prepare(wbuf, transform_wide.flatten())}
@ -113,7 +113,7 @@ class ModelState:
self.tensor_inputs[key] = qcom_tensor_from_opencl_address(imgs_cl[key].mem_address, self.input_shapes[key], dtype=dtypes.uint8)
else:
for key in imgs_cl:
self.numpy_inputs[key] = self.frames[key].buffer_from_cl(imgs_cl[key]).reshape(self.input_shapes[key])
self.numpy_inputs[key] = self.frames[key].buffer_from_cl(imgs_cl[key]).reshape(self.input_shapes[key]).astype(dtype=np.float32)
if prepare_only:
return None
@ -125,11 +125,13 @@ class ModelState:
outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
self.full_features_20Hz[:-1] = self.full_features_20Hz[1:]
self.full_features_20Hz[-1] = outputs['hidden_state'][0, :]
self.numpy_inputs['features_buffer'][0,:-1] = self.numpy_inputs['features_buffer'][0,1:]
self.numpy_inputs['features_buffer'][0,-1] = outputs['hidden_state'][0, :]
idxs = np.arange(-4,-100,-4)[::-1]
self.numpy_inputs['features_buffer'][:] = self.full_features_20Hz[idxs]
# TODO model only uses last value now
self.numpy_inputs['prev_desired_curv'][0,:-1] = self.numpy_inputs['prev_desired_curv'][0,1:]
self.numpy_inputs['prev_desired_curv'][0,-1,:] = outputs['desired_curvature'][0, :]
return outputs
@ -240,6 +242,7 @@ def main(demo=False):
is_rhd = sm["driverMonitoringState"].isRHD
frame_id = sm["roadCameraState"].frameId
v_ego = max(sm["carState"].vEgo, 0.)
lateral_control_params = np.array([v_ego, steer_delay], dtype=np.float32)
if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
@ -270,6 +273,7 @@ def main(demo=False):
inputs:dict[str, np.ndarray] = {
'desire': vec_desire,
'traffic_convention': traffic_convention,
'lateral_control_params': lateral_control_params,
}
mt1 = time.perf_counter()

@ -8,8 +8,8 @@
DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context) : ModelFrame(device_id, context) {
input_frames = std::make_unique<uint8_t[]>(buf_size);
input_frames_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, buf_size, NULL, &err));
img_buffer_20hz_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, 5*frame_size_bytes, NULL, &err));
region.origin = 4 * frame_size_bytes;
img_buffer_20hz_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, 2*frame_size_bytes, NULL, &err));
region.origin = 1 * frame_size_bytes;
region.size = frame_size_bytes;
last_img_cl = CL_CHECK_ERR(clCreateSubBuffer(img_buffer_20hz_cl, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &region, &err));
@ -20,7 +20,7 @@ DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context)
cl_mem* DrivingModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection) {
run_transform(yuv_cl, MODEL_WIDTH, MODEL_HEIGHT, frame_width, frame_height, frame_stride, frame_uv_offset, projection);
for (int i = 0; i < 4; i++) {
for (int i = 0; i < 1; i++) {
CL_CHECK(clEnqueueCopyBuffer(q, img_buffer_20hz_cl, img_buffer_20hz_cl, (i+1)*frame_size_bytes, i*frame_size_bytes, frame_size_bytes, 0, nullptr, nullptr));
}
loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, last_img_cl);

@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:72d3d6f8d3c98f5431ec86be77b6350d7d4f43c25075c0106f1d1e7ec7c77668
size 49096168
oid sha256:39786068cae1ed8c0dc34ef80c281dfcc67ed18a50e06b90765c49bcfdbf7db4
size 51453312

@ -96,6 +96,8 @@ class Parser:
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
if 'lat_planner_solution' in outs:
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
if 'desired_curvature' in outs:
self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))

@ -57,7 +57,7 @@ def generate_report(proposed, master, tmp, commit):
(lambda x: x.action.desiredCurvature, "desiredCurvature"),
(lambda x: x.leadsV3[0].x[0], "leadsV3.x"),
(lambda x: x.laneLines[1].y[0], "laneLines.y"),
(lambda x: x.meta.disengagePredictions.gasPressProbs[1], "gasPressProbs")
#(lambda x: x.meta.disengagePredictions.gasPressProbs[1], "gasPressProbs")
], "modelV2")
DriverStateV2_Plots = zl([
(lambda x: x.wheelOnRightProb, "wheelOnRightProb"),

@ -1 +1 @@
Subproject commit c18307e7494054745389289d55686e81cba88db5
Subproject commit 2619a86d2a6157c12cc9b1773b4a03cf968a1309
Loading…
Cancel
Save