Kalman filter to identify vehicle parameters (#1123)

* full vehicle model simulator

* Add vehicle model

* Model compiles

* Close enough

* Simulation works

* Add fast angle offset

* Tune fast angle offset learner

* Create live service for paramsd

* Better clamping

* Fix rotation matrix

* Cleanup before merge

* move debug script to debug/internal

* revert plannerd change

* switch vehicle model to corolla

* fix valid flag

* Bigger stiffness range

* Lower process noise on steer ratio

* Tuning

* Decimation

* No maha tests
pull/1163/head
Willem Melching 5 years ago committed by GitHub
parent 63b52b60cb
commit c9ecab2139
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      release/files_common
  2. 129
      selfdrive/debug/internal/test_paramsd.py
  3. 1
      selfdrive/locationd/kalman/SConscript
  4. 20
      selfdrive/locationd/kalman/helpers/__init__.py
  5. 16
      selfdrive/locationd/kalman/helpers/ekf_sym.py
  6. 198
      selfdrive/locationd/kalman/models/car_kf.py
  7. 109
      selfdrive/locationd/paramsd.py

@ -244,6 +244,7 @@ selfdrive/locationd/ublox_msg.h
selfdrive/locationd/test/*.py
selfdrive/locationd/locationd.py
selfdrive/locationd/paramsd.py
selfdrive/locationd/kalman/.gitignore
selfdrive/locationd/kalman/__init__.py
selfdrive/locationd/kalman/README.md
@ -251,6 +252,7 @@ selfdrive/locationd/kalman/SConscript
selfdrive/locationd/kalman/templates/*
selfdrive/locationd/kalman/helpers/*
selfdrive/locationd/kalman/models/live_kf.py
selfdrive/locationd/kalman/models/car_kf.py
selfdrive/locationd/calibrationd.py
selfdrive/locationd/calibration_helpers.py

@ -0,0 +1,129 @@
#!/usr/bin/env python3
import numpy as np
import math
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
from selfdrive.car.honda.interface import CarInterface
from selfdrive.car.honda.values import CAR
from selfdrive.controls.lib.vehicle_model import VehicleModel, create_dyn_state_matrices
from selfdrive.locationd.kalman.models.car_kf import CarKalman, ObservationKind, States
T_SIM = 5 * 60 # s
DT = 0.01
CP = CarInterface.get_params(CAR.CIVIC)
VM = VehicleModel(CP)
x, y = 0, 0 # m, m
psi = math.radians(0) # rad
# The state is x = [v, r]^T
# with v lateral speed [m/s], and r rotational speed [rad/s]
state = np.array([[0.0], [0.0]])
ts = np.arange(0, T_SIM, DT)
speeds = 10 * np.sin(2 * np.pi * ts / 200.) + 25
angle_offsets = math.radians(1.0) * np.ones_like(ts)
angle_offsets[ts > 60] = 0
steering_angles = np.radians(5 * np.cos(2 * np.pi * ts / 100.))
xs = []
ys = []
psis = []
yaw_rates = []
speed_ys = []
kf_states = []
kf_ps = []
kf = CarKalman()
for i, t in tqdm(list(enumerate(ts))):
u = speeds[i]
sa = steering_angles[i]
ao = angle_offsets[i]
A, B = create_dyn_state_matrices(u, VM)
state += DT * (A.dot(state) + B.dot(sa + ao))
x += u * math.cos(psi) * DT
y += (float(state[0]) * math.sin(psi) + u * math.sin(psi)) * DT
psi += float(state[1]) * DT
kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, [float(state[1])])
kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, [[u, float(state[0])]])
kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, [sa])
kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, [0])
kf.predict(t)
speed_ys.append(float(state[0]))
yaw_rates.append(float(state[1]))
kf_states.append(kf.x.copy())
kf_ps.append(kf.P.copy())
xs.append(x)
ys.append(y)
psis.append(psi)
xs = np.asarray(xs)
ys = np.asarray(ys)
psis = np.asarray(psis)
speed_ys = np.asarray(speed_ys)
kf_states = np.asarray(kf_states)
kf_ps = np.asarray(kf_ps)
palette = sns.color_palette()
def plot_with_bands(ts, state, label, ax, idx=1, converter=None):
mean = kf_states[:, state].flatten()
stds = np.sqrt(kf_ps[:, state, state].flatten())
if converter is not None:
mean = converter(mean)
stds = converter(stds)
sns.lineplot(ts, mean, label=label, ax=ax)
ax.fill_between(ts, mean - stds, mean + stds, alpha=.2, color=palette[idx])
print(kf.x)
sns.set_context("paper")
f, axes = plt.subplots(6, 1)
sns.lineplot(ts, np.degrees(steering_angles), label='Steering Angle [deg]', ax=axes[0])
plot_with_bands(ts, States.STEER_ANGLE, 'Steering Angle kf [deg]', axes[0], converter=np.degrees)
sns.lineplot(ts, np.degrees(yaw_rates), label='Yaw Rate [deg]', ax=axes[1])
plot_with_bands(ts, States.YAW_RATE, 'Yaw Rate kf [deg]', axes[1], converter=np.degrees)
sns.lineplot(ts, np.ones_like(ts) * VM.sR, label='Steer ratio [-]', ax=axes[2])
plot_with_bands(ts, States.STEER_RATIO, 'Steer ratio kf [-]', axes[2])
axes[2].set_ylim([10, 20])
sns.lineplot(ts, np.ones_like(ts), label='Tire stiffness[-]', ax=axes[3])
plot_with_bands(ts, States.STIFFNESS, 'Tire stiffness kf [-]', axes[3])
axes[3].set_ylim([0.8, 1.2])
sns.lineplot(ts, np.degrees(angle_offsets), label='Angle offset [deg]', ax=axes[4])
plot_with_bands(ts, States.ANGLE_OFFSET, 'Angle offset kf deg', axes[4], converter=np.degrees)
plot_with_bands(ts, States.ANGLE_OFFSET_FAST, 'Fast Angle offset kf deg', axes[4], converter=np.degrees, idx=2)
axes[4].set_ylim([-2, 2])
sns.lineplot(ts, speeds, ax=axes[5])
plt.show()

@ -8,6 +8,7 @@ to_build = {
'pos_computer_4': 'helpers/lst_sq_computer.py',
'pos_computer_5': 'helpers/lst_sq_computer.py',
'feature_handler_5': 'helpers/feature_handler.py',
'car': 'models/car_kf.py',
'gnss': 'models/gnss_kf.py',
'loc_4': 'models/loc_kf.py',
'live': 'models/live_kf.py',

@ -56,7 +56,15 @@ class ObservationKind():
PSEUDORANGE = 22
PSEUDORANGE_RATE = 23
names = ['Unknown',
CAL_DEVICE_FRAME_XY_SPEED = 24 # (x, y) [m/s]
CAL_DEVICE_FRAME_YAW_RATE = 25 # [rad/s]
STEER_ANGLE = 26 # [rad]
ANGLE_OFFSET_FAST = 27 # [rad]
STIFFNESS = 28 # [-]
STEER_RATIO = 29 # [-]
names = [
'Unknown',
'No observation',
'GPS NED',
'Odometric speed',
@ -77,7 +85,15 @@ class ObservationKind():
'Lane ecef point',
'imu frame eulers',
'GLONASS pseudorange',
'GLONASS pseudorange rate']
'GLONASS pseudorange rate',
'Calibrated Device Frame x,y speed',
'Calibrated Device Frame yaw rate',
'Steer Angle',
'Fast Angle Offset',
'Stiffness',
'Steer Ratio',
]
@classmethod
def to_string(cls, kind):

@ -74,8 +74,13 @@ def gen_code(name, f_sym, dt_sym, x_sym, obs_eqs, dim_x, dim_err, eskf_params=No
# linearize with jacobians
F_sym = f_err_sym.jacobian(x_err_sym)
if eskf_params:
for sym in x_err_sym:
F_sym = F_sym.subs(sym, 0)
assert dt_sym in F_sym.free_symbols
for i in range(len(obs_eqs)):
obs_eqs[i].append(obs_eqs[i][0].jacobian(x_sym))
if msckf and obs_eqs[i][1] in feature_track_kinds:
@ -336,6 +341,17 @@ class EKF_sym():
self.rewind_states = self.rewind_states[-REWIND_TO_KEEP:]
self.rewind_obscache = self.rewind_obscache[-REWIND_TO_KEEP:]
def predict(self, t):
# initialize time
if self.filter_time is None:
self.filter_time = t
# predict
dt = t - self.filter_time
assert dt >= 0
self.x, self.P = self._predict(self.x, self.P, dt)
self.filter_time = t
def predict_and_update_batch(self, t, kind, z, R, extra_args=[[]], augment=False):
# TODO handle rewinding at this level"

@ -0,0 +1,198 @@
#!/usr/bin/env python3
import math
import numpy as np
import sympy as sp
from selfdrive.locationd.kalman.helpers import ObservationKind
from selfdrive.locationd.kalman.helpers.ekf_sym import EKF_sym, gen_code
i = 0
def _slice(n):
global i
s = slice(i, i + n)
i += n
return s
class States():
# Vehicle model params
STIFFNESS = _slice(1) # [-]
STEER_RATIO = _slice(1) # [-]
ANGLE_OFFSET = _slice(1) # [rad]
ANGLE_OFFSET_FAST = _slice(1) # [rad]
VELOCITY = _slice(2) # (x, y) [m/s]
YAW_RATE = _slice(1) # [rad/s]
STEER_ANGLE = _slice(1) # [rad]
class CarKalman():
name = 'car'
x_initial = np.array([
1.0,
15.0,
0.0,
0.0,
10.0, 0.0,
0.0,
0.0,
])
# state covariance
P_initial = np.diag([
.1**2,
.1**2,
math.radians(0.1)**2,
math.radians(0.1)**2,
10**2, 10**2,
1**2,
1**2,
])
# process noise
Q = np.diag([
(.05/10)**2,
.0001**2,
math.radians(0.01)**2,
math.radians(0.2)**2,
.1**2, .1**2,
math.radians(0.1)**2,
math.radians(0.1)**2,
])
obs_noise = {
ObservationKind.CAL_DEVICE_FRAME_XY_SPEED: np.diag([0.1**2, 0.1**2]),
ObservationKind.CAL_DEVICE_FRAME_YAW_RATE: np.atleast_2d(math.radians(0.1)**2),
ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.1)**2),
ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(5.0)**2),
ObservationKind.STEER_RATIO: np.atleast_2d(50.0**2),
ObservationKind.STIFFNESS: np.atleast_2d(50.0**2),
}
maha_test_kinds = [] # [ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED]
@staticmethod
def generate_code():
dim_state = CarKalman.x_initial.shape[0]
name = CarKalman.name
maha_test_kinds = CarKalman.maha_test_kinds
# make functions and jacobians with sympy
# state variables
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
# Vehicle model constants
# TODO: Read from car params at runtime
from selfdrive.controls.lib.vehicle_model import VehicleModel
from selfdrive.car.toyota.interface import CarInterface
from selfdrive.car.toyota.values import CAR
CP = CarInterface.get_params(CAR.COROLLA_TSS2)
VM = VehicleModel(CP)
m = VM.m
j = VM.j
aF = VM.aF
aR = VM.aR
x = state[States.STIFFNESS, :][0, 0]
cF, cR = x * VM.cF, x * VM.cR
angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
sa = state[States.STEER_ANGLE, :][0, 0]
sR = state[States.STEER_RATIO, :][0, 0]
u, v = state[States.VELOCITY, :]
r = state[States.YAW_RATE, :][0, 0]
A = sp.Matrix(np.zeros((2, 2)))
A[0, 0] = -(cF + cR) / (m * u)
A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u
A[1, 0] = -(cF * aF - cR * aR) / (j * u)
A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u)
B = sp.Matrix(np.zeros((2, 1)))
B[0, 0] = cF / m / sR
B[1, 0] = (cF * aF) / j / sR
x = sp.Matrix([v, r]) # lateral velocity, yaw rate
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast)
dt = sp.Symbol('dt')
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.VELOCITY.start + 1, 0] = x_dot[0]
state_dot[States.YAW_RATE.start, 0] = x_dot[1]
# Basic descretization, 1st order integrator
# Can be pretty bad if dt is big
f_sym = state + dt * state_dot
#
# Observation functions
#
obs_eqs = [
[sp.Matrix([r]), ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, None],
[sp.Matrix([u, v]), ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, None],
[sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None],
[sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
[sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
[sp.Matrix([x]), ObservationKind.STIFFNESS, None],
]
gen_code(name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, maha_test_kinds=maha_test_kinds)
def __init__(self):
self.dim_state = self.x_initial.shape[0]
# init filter
self.filter = EKF_sym(self.name, self.Q, self.x_initial, self.P_initial, self.dim_state, self.dim_state, maha_test_kinds=self.maha_test_kinds)
@property
def x(self):
return self.filter.state()
@property
def P(self):
return self.filter.covs()
def predict(self, t):
return self.filter.predict(t)
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=False)
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i, :, :] = obs_noise
return R
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
if __name__ == "__main__":
CarKalman.generate_code()

@ -0,0 +1,109 @@
#!/usr/bin/env python3
import math
import cereal.messaging as messaging
import common.transformations.orientation as orient
from selfdrive.locationd.kalman.models.car_kf import CarKalman, ObservationKind, States
CARSTATE_DECIMATION = 5
class ParamsLearner:
def __init__(self):
self.kf = CarKalman()
self.active = False
self.speed = 0
self.steering_pressed = False
self.steering_angle = 0
self.carstate_counter = 0
def update_active(self):
self.active = (abs(self.steering_angle) < 45 or not self.steering_pressed) and self.speed > 5
def handle_log(self, t, which, msg):
if which == 'liveLocation':
roll, pitch, yaw = math.radians(msg.roll), math.radians(msg.pitch), math.radians(msg.heading)
v_device = orient.rot_from_euler([roll, pitch, yaw]).T.dot(msg.vNED)
self.speed = v_device[0]
self.update_active()
if self.active:
self.kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_YAW_RATE, [-msg.gyro[2]])
self.kf.predict_and_observe(t, ObservationKind.CAL_DEVICE_FRAME_XY_SPEED, [[v_device[0], -v_device[1]]])
# Clamp values
x = self.kf.x
if not (10 < x[States.STEER_RATIO] < 25):
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, [15.0])
if not (0.5 < x[States.STIFFNESS] < 3.0):
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, [1.0])
else:
self.kf.filter.filter_time = t - 0.1
elif which == 'carState':
self.carstate_counter += 1
if self.carstate_counter % CARSTATE_DECIMATION == 0:
self.steering_angle = msg.steeringAngle
self.steering_pressed = msg.steeringPressed
self.update_active()
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, [math.radians(msg.steeringAngle)])
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, [0])
else:
self.kf.filter.filter_time = t - 0.1
def main(sm=None, pm=None):
if sm is None:
sm = messaging.SubMaster(['liveLocation', 'carState'])
if pm is None:
pm = messaging.PubMaster(['liveParameters'])
learner = ParamsLearner()
while True:
sm.update()
for which, updated in sm.updated.items():
if not updated:
continue
t = sm.logMonoTime[which] * 1e-9
learner.handle_log(t, which, sm[which])
# TODO: set valid to false when locationd stops sending
# TODO: make sure controlsd knows when there is no gyro
# TODO: move posenetValid somewhere else to show the model uncertainty alert
# TODO: Save and resume values from param
# TODO: Change KF to allow mass, etc to be inputs in predict step
if sm.updated['carState']:
msg = messaging.new_message()
msg.logMonoTime = sm.logMonoTime['carState']
msg.init('liveParameters')
msg.liveParameters.valid = True # TODO: Check if learned values are sane
msg.liveParameters.posenetValid = True
msg.liveParameters.sensorValid = True
x = learner.kf.x
msg.liveParameters.steerRatio = float(x[States.STEER_RATIO])
msg.liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
msg.liveParameters.angleOffsetAverage = math.degrees(x[States.ANGLE_OFFSET])
msg.liveParameters.angleOffset = math.degrees(x[States.ANGLE_OFFSET_FAST])
# P = learner.kf.P
# print()
# print("sR", float(x[States.STEER_RATIO]), float(P[States.STEER_RATIO, States.STEER_RATIO])**0.5)
# print("x ", float(x[States.STIFFNESS]), float(P[States.STIFFNESS, States.STIFFNESS])**0.5)
# print("ao avg ", math.degrees(x[States.ANGLE_OFFSET]), math.degrees(P[States.ANGLE_OFFSET, States.ANGLE_OFFSET])**0.5)
# print("ao ", math.degrees(x[States.ANGLE_OFFSET_FAST]), math.degrees(P[States.ANGLE_OFFSET_FAST, States.ANGLE_OFFSET_FAST])**0.5)
pm.send('liveParameters', msg)
if __name__ == "__main__":
main()
Loading…
Cancel
Save