modeld: parsing and publishing in python (#30273)

* WIP try modeld all in python

* fix plan

* add lane lines stds

* fix lane lines prob

* add lead prob

* add meta

* simplify plan parsing

* add hard brake pred

* add confidence

* fix desire state and desire pred

* check this file for now

* rm prints

* rm debug

* add todos

* add plan_t_idxs

* same as cpp

* removed cython

* add wfd width - rm cpp code

* add new files rm old files

* get metadata at compile time

* forgot this file

* now uses more CPU

* not used

* update readme

* lint

* copy this too

* simplify disengage probs

* update model replay ref commit

* update again

* confidence: remove if statemens

* use publish_state.enqueue

* Revert "use publish_state.enqueue"

This reverts commit d8807c8348.

* confidence: better shape defs

* use ModelConstants class

* fix confidence

* Parser

* slightly more power too

* no inline ifs :(

* confidence: just use if statements
pull/30033/head^2
YassineYousfi 2 years ago committed by GitHub
parent 09c8866d17
commit cad17b1255
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      .gitignore
  2. 5
      release/files_common
  3. 4
      selfdrive/controls/lib/drive_helpers.py
  4. 6
      selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
  5. 12
      selfdrive/controls/lib/longcontrol.py
  6. 16
      selfdrive/controls/lib/longitudinal_planner.py
  7. 6
      selfdrive/controls/plannerd.py
  8. 10
      selfdrive/modeld/SConscript
  9. 75
      selfdrive/modeld/constants.py
  10. 181
      selfdrive/modeld/fill_model_msg.py
  11. 29
      selfdrive/modeld/get_model_metadata.py
  12. 76
      selfdrive/modeld/modeld.py
  13. 6
      selfdrive/modeld/models/README.md
  14. 330
      selfdrive/modeld/models/driving.cc
  15. 257
      selfdrive/modeld/models/driving.h
  16. 25
      selfdrive/modeld/models/driving.pxd
  17. 52
      selfdrive/modeld/models/driving_pyx.pyx
  18. 8
      selfdrive/modeld/navmodeld.py
  19. 100
      selfdrive/modeld/parse_model_outputs.py
  20. 32
      selfdrive/modeld/thneed/lib.py
  21. 8
      selfdrive/test/longitudinal_maneuvers/plant.py
  22. 2
      selfdrive/test/process_replay/model_replay_ref_commit
  23. 2
      selfdrive/test/test_onroad.py
  24. 2
      system/hardware/tici/tests/test_power_draw.py
  25. 1
      tools/sim/Dockerfile.sim

1
.gitignore vendored

@ -79,6 +79,7 @@ comma*.sh
selfdrive/modeld/thneed/compile selfdrive/modeld/thneed/compile
selfdrive/modeld/models/*.thneed selfdrive/modeld/models/*.thneed
selfdrive/modeld/models/*.pkl
*.bz2 *.bz2

@ -358,6 +358,9 @@ selfdrive/modeld/.gitignore
selfdrive/modeld/__init__.py selfdrive/modeld/__init__.py
selfdrive/modeld/SConscript selfdrive/modeld/SConscript
selfdrive/modeld/modeld.py selfdrive/modeld/modeld.py
selfdrive/modeld/parse_model_outputs.py
selfdrive/modeld/fill_model_msg.py
selfdrive/modeld/get_model_metadata.py
selfdrive/modeld/navmodeld.py selfdrive/modeld/navmodeld.py
selfdrive/modeld/dmonitoringmodeld.py selfdrive/modeld/dmonitoringmodeld.py
selfdrive/modeld/constants.py selfdrive/modeld/constants.py
@ -370,8 +373,6 @@ selfdrive/modeld/models/*.pyx
selfdrive/modeld/models/commonmodel.cc selfdrive/modeld/models/commonmodel.cc
selfdrive/modeld/models/commonmodel.h selfdrive/modeld/models/commonmodel.h
selfdrive/modeld/models/driving.cc
selfdrive/modeld/models/driving.h
selfdrive/modeld/models/supercombo.onnx selfdrive/modeld/models/supercombo.onnx
selfdrive/modeld/models/dmonitoring_model_q.dlc selfdrive/modeld/models/dmonitoring_model_q.dlc

@ -4,7 +4,7 @@ from cereal import car, log
from openpilot.common.conversions import Conversions as CV from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import clip, interp from openpilot.common.numpy_fast import clip, interp
from openpilot.common.realtime import DT_MDL from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
# WARNING: this value was determined based on the model's training distribution, # WARNING: this value was determined based on the model's training distribution,
# model predictions above this speed can be unpredictable # model predictions above this speed can be unpredictable
@ -177,7 +177,7 @@ def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
# in high delay cases some corrections never even get commanded. So just use # in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature # psi to calculate a simple linearization of desired curvature
current_curvature_desired = curvatures[0] current_curvature_desired = curvatures[0]
psi = interp(delay, T_IDXS[:CONTROL_N], psis) psi = interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
average_curvature_desired = psi / (v_ego * delay) average_curvature_desired = psi / (v_ego * delay)
desired_curvature = 2 * average_curvature_desired - current_curvature_desired desired_curvature = 2 * average_curvature_desired - current_curvature_desired

@ -5,7 +5,7 @@ import numpy as np
from casadi import SX, vertcat, sin, cos from casadi import SX, vertcat, sin, cos
# WARNING: imports outside of constants will not trigger a rebuild # WARNING: imports outside of constants will not trigger a rebuild
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
if __name__ == '__main__': # generating code if __name__ == '__main__': # generating code
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
@ -66,7 +66,7 @@ def gen_lat_ocp():
ocp = AcadosOcp() ocp = AcadosOcp()
ocp.model = gen_lat_model() ocp.model = gen_lat_model()
Tf = np.array(T_IDXS)[N] Tf = np.array(ModelConstants.T_IDXS)[N]
# set dimensions # set dimensions
ocp.dims.N = N ocp.dims.N = N
@ -122,7 +122,7 @@ def gen_lat_ocp():
# set prediction horizon # set prediction horizon
ocp.solver_options.tf = Tf ocp.solver_options.tf = Tf
ocp.solver_options.shooting_nodes = np.array(T_IDXS)[:N+1] ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1]
ocp.code_export_directory = EXPORT_DIR ocp.code_export_directory = EXPORT_DIR
return ocp return ocp

@ -3,7 +3,7 @@ from openpilot.common.numpy_fast import clip, interp
from openpilot.common.realtime import DT_CTRL from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, apply_deadzone from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, apply_deadzone
from openpilot.selfdrive.controls.lib.pid import PIDController from openpilot.selfdrive.controls.lib.pid import PIDController
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
LongCtrlState = car.CarControl.Actuators.LongControlState LongCtrlState = car.CarControl.Actuators.LongControlState
@ -70,19 +70,19 @@ class LongControl:
# Interp control trajectory # Interp control trajectory
speeds = long_plan.speeds speeds = long_plan.speeds
if len(speeds) == CONTROL_N: if len(speeds) == CONTROL_N:
v_target_now = interp(t_since_plan, T_IDXS[:CONTROL_N], speeds) v_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_now = interp(t_since_plan, T_IDXS[:CONTROL_N], long_plan.accels) a_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], long_plan.accels)
v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, T_IDXS[:CONTROL_N], speeds) v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_lower = 2 * (v_target_lower - v_target_now) / self.CP.longitudinalActuatorDelayLowerBound - a_target_now a_target_lower = 2 * (v_target_lower - v_target_now) / self.CP.longitudinalActuatorDelayLowerBound - a_target_now
v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, T_IDXS[:CONTROL_N], speeds) v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_upper = 2 * (v_target_upper - v_target_now) / self.CP.longitudinalActuatorDelayUpperBound - a_target_now a_target_upper = 2 * (v_target_upper - v_target_now) / self.CP.longitudinalActuatorDelayUpperBound - a_target_now
v_target = min(v_target_lower, v_target_upper) v_target = min(v_target_lower, v_target_upper)
a_target = min(a_target_lower, a_target_upper) a_target = min(a_target_lower, a_target_upper)
v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, T_IDXS[:CONTROL_N], speeds) v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, ModelConstants.T_IDXS[:CONTROL_N], speeds)
else: else:
v_target = 0.0 v_target = 0.0
v_target_now = 0.0 v_target_now = 0.0

@ -9,7 +9,7 @@ import cereal.messaging as messaging
from openpilot.common.conversions import Conversions as CV from openpilot.common.conversions import Conversions as CV
from openpilot.common.filter_simple import FirstOrderFilter from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import DT_MDL from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
@ -76,9 +76,9 @@ class LongitudinalPlanner:
if (len(model_msg.position.x) == 33 and if (len(model_msg.position.x) == 33 and
len(model_msg.velocity.x) == 33 and len(model_msg.velocity.x) == 33 and
len(model_msg.acceleration.x) == 33): len(model_msg.acceleration.x) == 33):
x = np.interp(T_IDXS_MPC, T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
v = np.interp(T_IDXS_MPC, T_IDXS, model_msg.velocity.x) - model_error v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error
a = np.interp(T_IDXS_MPC, T_IDXS, model_msg.acceleration.x) a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
j = np.zeros(len(T_IDXS_MPC)) j = np.zeros(len(T_IDXS_MPC))
else: else:
x = np.zeros(len(T_IDXS_MPC)) x = np.zeros(len(T_IDXS_MPC))
@ -135,11 +135,11 @@ class LongitudinalPlanner:
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error) x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error)
self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=self.personality) self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=self.personality)
self.v_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.v_solution) self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.a_solution) self.a_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N] self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N]
self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N] self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N]
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution) self.j_desired_trajectory = np.interp(ModelConstants.T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone # TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
@ -148,7 +148,7 @@ class LongitudinalPlanner:
# Interpolate 0.05 seconds and save as starting point for next iteration # Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory)) self.a_desired = float(interp(DT_MDL, ModelConstants.T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0 self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm): def publish(self, sm, pm):

@ -5,7 +5,7 @@ from cereal import car
from openpilot.common.params import Params from openpilot.common.params import Params
from openpilot.common.realtime import Priority, config_realtime_process from openpilot.common.realtime import Priority, config_realtime_process
from openpilot.system.swaglog import cloudlog from openpilot.system.swaglog import cloudlog
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
from openpilot.selfdrive.controls.lib.lateral_planner import LateralPlanner from openpilot.selfdrive.controls.lib.lateral_planner import LateralPlanner
import cereal.messaging as messaging import cereal.messaging as messaging
@ -14,8 +14,8 @@ def cumtrapz(x, t):
return np.concatenate([[0], np.cumsum(((x[0:-1] + x[1:])/2) * np.diff(t))]) return np.concatenate([[0], np.cumsum(((x[0:-1] + x[1:])/2) * np.diff(t))])
def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner): def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner):
plan_odo = cumtrapz(longitudinal_planner.v_desired_trajectory_full, T_IDXS) plan_odo = cumtrapz(longitudinal_planner.v_desired_trajectory_full, ModelConstants.T_IDXS)
model_odo = cumtrapz(lateral_planner.v_plan, T_IDXS) model_odo = cumtrapz(lateral_planner.v_plan, ModelConstants.T_IDXS)
ui_send = messaging.new_message('uiPlan') ui_send = messaging.new_message('uiPlan')
ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2']) ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])

@ -45,17 +45,19 @@ snpe_rpath = lenvCython['RPATH'] + [snpe_rpath_qcom if arch == "larch64" else sn
cython_libs = envCython["LIBS"] + libs cython_libs = envCython["LIBS"] + libs
snpemodel_lib = lenv.Library('snpemodel', ['runners/snpemodel.cc']) snpemodel_lib = lenv.Library('snpemodel', ['runners/snpemodel.cc'])
commonmodel_lib = lenv.Library('commonmodel', common_src) commonmodel_lib = lenv.Library('commonmodel', common_src)
driving_lib = lenv.Library('driving', ['models/driving.cc'])
lenvCython.Program('runners/runmodel_pyx.so', 'runners/runmodel_pyx.pyx', LIBS=cython_libs, FRAMEWORKS=frameworks) lenvCython.Program('runners/runmodel_pyx.so', 'runners/runmodel_pyx.pyx', LIBS=cython_libs, FRAMEWORKS=frameworks)
lenvCython.Program('runners/snpemodel_pyx.so', 'runners/snpemodel_pyx.pyx', LIBS=[snpemodel_lib, snpe_lib, *cython_libs], FRAMEWORKS=frameworks, RPATH=snpe_rpath) lenvCython.Program('runners/snpemodel_pyx.so', 'runners/snpemodel_pyx.pyx', LIBS=[snpemodel_lib, snpe_lib, *cython_libs], FRAMEWORKS=frameworks, RPATH=snpe_rpath)
lenvCython.Program('models/commonmodel_pyx.so', 'models/commonmodel_pyx.pyx', LIBS=[commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks) lenvCython.Program('models/commonmodel_pyx.so', 'models/commonmodel_pyx.pyx', LIBS=[commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks)
lenvCython.Program('models/driving_pyx.so', 'models/driving_pyx.pyx', LIBS=[driving_lib, commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks)
# Get model metadata
fn = File("models/supercombo").abspath
cmd = f'python3 {Dir("#selfdrive/modeld").abspath}/get_model_metadata.py {fn}.onnx'
files = sum([lenv.Glob("#"+x) for x in open(File("#release/files_common").abspath).read().split("\n") if x.endswith("get_model_metadata.py")], [])
lenv.Command(fn + "_metadata.pkl", [fn + ".onnx"]+files, cmd)
# Build thneed model # Build thneed model
if arch == "larch64" or GetOption('pc_thneed'): if arch == "larch64" or GetOption('pc_thneed'):
fn = File("models/supercombo").abspath
tinygrad_opts = ["NOLOCALS=1", "IMAGE=2", "GPU=1"] tinygrad_opts = ["NOLOCALS=1", "IMAGE=2", "GPU=1"]
if not GetOption('pc_thneed'): if not GetOption('pc_thneed'):
# use FLOAT16 on device for speed + don't cache the CL kernels for space # use FLOAT16 on device for speed + don't cache the CL kernels for space

@ -1,7 +1,78 @@
IDX_N = 33 import numpy as np
def index_function(idx, max_val=192, max_idx=32): def index_function(idx, max_val=192, max_idx=32):
return (max_val) * ((idx/max_idx)**2) return (max_val) * ((idx/max_idx)**2)
class ModelConstants:
# time and distance indices
IDX_N = 33
T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)]
X_IDXS = [index_function(idx, max_val=192.0) for idx in range(IDX_N)]
LEAD_T_IDXS = [0., 2., 4., 6., 8., 10.]
LEAD_T_OFFSETS = [0., 2., 4.]
META_T_IDXS = [2., 4., 6., 8., 10.]
T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)] # model inputs constants
MODEL_FREQ = 20
FEATURE_LEN = 512
HISTORY_BUFFER_LEN = 99
DESIRE_LEN = 8
TRAFFIC_CONVENTION_LEN = 2
NAV_FEATURE_LEN = 256
NAV_INSTRUCTION_LEN = 150
DRIVING_STYLE_LEN = 12
# model outputs constants
FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32)
FCW_THRESHOLDS_3MS2 = np.array([.7, .7], dtype=np.float32)
DISENGAGE_WIDTH = 5
POSE_WIDTH = 6
WIDE_FROM_DEVICE_WIDTH = 3
SIM_POSE_WIDTH = 6
LEAD_WIDTH = 4
LANE_LINES_WIDTH = 2
ROAD_EDGES_WIDTH = 2
PLAN_WIDTH = 15
DESIRE_PRED_WIDTH = 8
NUM_LANE_LINES = 4
NUM_ROAD_EDGES = 2
LEAD_TRAJ_LEN = 6
DESIRE_PRED_LEN = 4
PLAN_MHP_N = 5
LEAD_MHP_N = 2
PLAN_MHP_SELECTION = 1
LEAD_MHP_SELECTION = 3
FCW_THRESHOLD_5MS2_HIGH = 0.15
FCW_THRESHOLD_5MS2_LOW = 0.05
FCW_THRESHOLD_3MS2 = 0.7
CONFIDENCE_BUFFER_LEN = 5
RYG_GREEN = 0.01165
RYG_YELLOW = 0.06157
# model outputs slices
class Plan:
POSITION = slice(0, 3)
VELOCITY = slice(3, 6)
ACCELERATION = slice(6, 9)
T_FROM_CURRENT_EULER = slice(9, 12)
ORIENTATION_RATE = slice(12, 15)
class Meta:
ENGAGED = slice(0, 1)
# next 2, 4, 6, 8, 10 seconds
GAS_DISENGAGE = slice(1, 36, 7)
BRAKE_DISENGAGE = slice(2, 36, 7)
STEER_OVERRIDE = slice(3, 36, 7)
HARD_BRAKE_3 = slice(4, 36, 7)
HARD_BRAKE_4 = slice(5, 36, 7)
HARD_BRAKE_5 = slice(6, 36, 7)
GAS_PRESS = slice(7, 36, 7)
# next 0, 2, 4, 6, 8, 10 seconds
LEFT_BLINKER = slice(36, 48, 2)
RIGHT_BLINKER = slice(37, 48, 2)

@ -0,0 +1,181 @@
import capnp
import numpy as np
from typing import Dict
from cereal import log
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
ConfidenceClass = log.ModelDataV2.ConfidenceClass
class PublishState:
def __init__(self):
self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
self.prev_brake_5ms2_probs = np.zeros(ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
self.prev_brake_3ms2_probs = np.zeros(ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
builder.t = t
builder.x = x.tolist()
builder.y = y.tolist()
builder.z = z.tolist()
if x_std is not None:
builder.xStd = x_std.tolist()
if y_std is not None:
builder.yStd = y_std.tolist()
if z_std is not None:
builder.zStd = z_std.tolist()
def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
builder.t = t
builder.x = x.tolist()
builder.y = y.tolist()
builder.v = v.tolist()
builder.a = a.tolist()
if x_std is not None:
builder.xStd = x_std.tolist()
if y_std is not None:
builder.yStd = y_std.tolist()
if v_std is not None:
builder.vStd = v_std.tolist()
if a_std is not None:
builder.aStd = a_std.tolist()
def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray], publish_state: PublishState,
vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
timestamp_eof: int, timestamp_llk: int, model_execution_time: float,
nav_enabled: bool, valid: bool) -> None:
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
msg.valid = valid
modelV2 = msg.modelV2
modelV2.frameId = vipc_frame_id
modelV2.frameIdExtra = vipc_frame_id_extra
modelV2.frameAge = frame_age
modelV2.frameDropPerc = frame_drop * 100
modelV2.timestampEof = timestamp_eof
modelV2.locationMonoTime = timestamp_llk
modelV2.modelExecutionTime = model_execution_time
modelV2.navEnabled = nav_enabled
# plan
position = modelV2.position
fill_xyzt(position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
velocity = modelV2.velocity
fill_xyzt(velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
acceleration = modelV2.acceleration
fill_xyzt(acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
orientation = modelV2.orientation
fill_xyzt(orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
orientation_rate = modelV2.orientationRate
fill_xyzt(orientation_rate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
# times at X_IDXS according to model plan
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
PLAN_T_IDXS[0] = 0.0
plan_x = net_output_data['plan'][0,:,Plan.POSITION][:,0].tolist()
for xidx in range(1, ModelConstants.IDX_N):
tidx = 0
# increment tidx until we find an element that's further away than the current xidx
while tidx < ModelConstants.IDX_N - 1 and plan_x[tidx+1] < ModelConstants.X_IDXS[xidx]:
tidx += 1
if tidx == ModelConstants.IDX_N - 1:
# if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
PLAN_T_IDXS[xidx] = ModelConstants.T_IDXS[ModelConstants.IDX_N - 1]
break
# interpolate to find `t` for the current xidx
current_x_val = plan_x[tidx]
next_x_val = plan_x[tidx+1]
p = (ModelConstants.X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val)
PLAN_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx+1] + (1 - p) * ModelConstants.T_IDXS[tidx]
# lane lines
modelV2.init('laneLines', 4)
for i in range(4):
lane_line = modelV2.laneLines[i]
fill_xyzt(lane_line, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
# road edges
modelV2.init('roadEdges', 2)
for i in range(2):
road_edge = modelV2.roadEdges[i]
fill_xyzt(road_edge, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
# leads
modelV2.init('leadsV3', 3)
for i in range(3):
lead = modelV2.leadsV3[i]
fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
lead.prob = net_output_data['lead_prob'][0,i].tolist()
lead.probTime = ModelConstants.LEAD_T_OFFSETS[i]
# meta
meta = modelV2.meta
meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
meta.init('disengagePredictions')
disengage_predictions = meta.disengagePredictions
disengage_predictions.t = ModelConstants.META_T_IDXS
disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]
publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:]
publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0]
hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \
(publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all()
meta.hardBrakePredicted = hard_brake_predicted.item()
# temporal pose
temporal_pose = modelV2.temporalPose
temporal_pose.trans = net_output_data['sim_pose'][0,:3].tolist()
temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist()
temporal_pose.rot = net_output_data['sim_pose'][0,3:].tolist()
temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist()
# confidence
if vipc_frame_id % (2*ModelConstants.MODEL_FREQ) == 0:
# any disengage prob
brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
# independent disengage prob for each 2s slice
ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
# rolling buf for 2, 4, 6, 8, 10s
publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:]
publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs
score = 0.
for i in range(ModelConstants.DISENGAGE_WIDTH):
score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH
if score < ModelConstants.RYG_GREEN:
modelV2.confidence = ConfidenceClass.green
elif score < ModelConstants.RYG_YELLOW:
modelV2.confidence = ConfidenceClass.yellow
else:
modelV2.confidence = ConfidenceClass.red
def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray],
vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
cameraOdometry = msg.cameraOdometry
cameraOdometry.frameId = vipc_frame_id
cameraOdometry.timestampEof = timestamp_eof
cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()

@ -0,0 +1,29 @@
#!/usr/bin/env python3
import sys
import pathlib
import onnx
import codecs
import pickle
from typing import Tuple
def get_name_and_shape(value_info:onnx.ValueInfoProto) -> Tuple[str, Tuple[int,...]]:
shape = tuple([int(dim.dim_value) for dim in value_info.type.tensor_type.shape.dim])
name = value_info.name
return name, shape
if __name__ == "__main__":
model_path = pathlib.Path(sys.argv[1])
model = onnx.load(str(model_path))
i = [x.key for x in model.metadata_props].index('output_slices')
output_slices = model.metadata_props[i].value
metadata = {}
metadata['output_slices'] = pickle.loads(codecs.decode(output_slices.encode(), "base64"))
metadata['input_shapes'] = dict([get_name_and_shape(x) for x in model.graph.input])
metadata['output_shapes'] = dict([get_name_and_shape(x) for x in model.graph.output])
metadata_path = model_path.parent / (model_path.stem + '_metadata.pkl')
with open(metadata_path, 'wb') as f:
pickle.dump(metadata, f)
print(f'saved metadata to {metadata_path}')

@ -1,7 +1,9 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import sys import sys
import time import time
import pickle
import numpy as np import numpy as np
import cereal.messaging as messaging
from pathlib import Path from pathlib import Path
from typing import Dict, Optional from typing import Dict, Optional
from setproctitle import setproctitle from setproctitle import setproctitle
@ -13,16 +15,17 @@ from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import config_realtime_process from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import get_warp_matrix from openpilot.common.transformations.model import get_warp_matrix
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
from openpilot.selfdrive.modeld.models.driving_pyx import (
PublishState, create_model_msg, create_pose_msg,
FEATURE_LEN, HISTORY_BUFFER_LEN, DESIRE_LEN, TRAFFIC_CONVENTION_LEN, NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN,
OUTPUT_SIZE, NET_OUTPUT_SIZE, MODEL_FREQ)
MODEL_PATHS = { MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed', ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'} ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
class FrameMeta: class FrameMeta:
frame_id: int = 0 frame_id: int = 0
timestamp_sof: int = 0 timestamp_sof: int = 0
@ -43,28 +46,38 @@ class ModelState:
def __init__(self, context: CLContext): def __init__(self, context: CLContext):
self.frame = ModelFrame(context) self.frame = ModelFrame(context)
self.wide_frame = ModelFrame(context) self.wide_frame = ModelFrame(context)
self.prev_desire = np.zeros(DESIRE_LEN, dtype=np.float32) self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.output = np.zeros(NET_OUTPUT_SIZE, dtype=np.float32)
self.inputs = { self.inputs = {
'desire': np.zeros(DESIRE_LEN * (HISTORY_BUFFER_LEN+1), dtype=np.float32), 'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(TRAFFIC_CONVENTION_LEN, dtype=np.float32), 'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'nav_features': np.zeros(NAV_FEATURE_LEN, dtype=np.float32), 'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32), 'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
'features_buffer': np.zeros(HISTORY_BUFFER_LEN * FEATURE_LEN, dtype=np.float32), 'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
} }
with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
self.output_slices = model_metadata['output_slices']
net_output_size = model_metadata['output_shapes']['outputs'][1]
self.output = np.zeros(net_output_size, dtype=np.float32)
self.parser = Parser()
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context) self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
self.model.addInput("input_imgs", None) self.model.addInput("input_imgs", None)
self.model.addInput("big_input_imgs", None) self.model.addInput("big_input_imgs", None)
for k,v in self.inputs.items(): for k,v in self.inputs.items():
self.model.addInput(k, v) self.model.addInput(k, v)
def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]:
return {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray, def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[np.ndarray]: inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]:
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge # Model decides when action is completed, so desire input is just a pulse triggered on rising edge
inputs['desire'][0] = 0 inputs['desire'][0] = 0
self.inputs['desire'][:-DESIRE_LEN] = self.inputs['desire'][DESIRE_LEN:] self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
self.inputs['desire'][-DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0) self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.prev_desire[:] = inputs['desire'] self.prev_desire[:] = inputs['desire']
self.inputs['traffic_convention'][:] = inputs['traffic_convention'] self.inputs['traffic_convention'][:] = inputs['traffic_convention']
@ -81,9 +94,11 @@ class ModelState:
return None return None
self.model.execute() self.model.execute()
self.inputs['features_buffer'][:-FEATURE_LEN] = self.inputs['features_buffer'][FEATURE_LEN:] outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
self.inputs['features_buffer'][-FEATURE_LEN:] = self.output[OUTPUT_SIZE:OUTPUT_SIZE+FEATURE_LEN]
return self.output self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
return outputs
def main(): def main():
@ -122,22 +137,21 @@ def main():
pm = PubMaster(["modelV2", "cameraOdometry"]) pm = PubMaster(["modelV2", "cameraOdometry"])
sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"]) sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"])
state = PublishState() publish_state = PublishState()
params = Params() params = Params()
# setup filter to track dropped frames # setup filter to track dropped frames
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / MODEL_FREQ) frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ)
frame_id = 0 frame_id = 0
last_vipc_frame_id = 0 last_vipc_frame_id = 0
run_count = 0 run_count = 0
# last = 0.0
model_transform_main = np.zeros((3, 3), dtype=np.float32) model_transform_main = np.zeros((3, 3), dtype=np.float32)
model_transform_extra = np.zeros((3, 3), dtype=np.float32) model_transform_extra = np.zeros((3, 3), dtype=np.float32)
live_calib_seen = False live_calib_seen = False
driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32) driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32)
nav_features = np.zeros(NAV_FEATURE_LEN, dtype=np.float32) nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32)
nav_instructions = np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32) nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)
buf_main, buf_extra = None, None buf_main, buf_extra = None, None
meta_main = FrameMeta() meta_main = FrameMeta()
meta_extra = FrameMeta() meta_extra = FrameMeta()
@ -190,8 +204,8 @@ def main():
traffic_convention = np.zeros(2) traffic_convention = np.zeros(2)
traffic_convention[int(is_rhd)] = 1 traffic_convention[int(is_rhd)] = 1
vec_desire = np.zeros(DESIRE_LEN, dtype=np.float32) vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
if desire >= 0 and desire < DESIRE_LEN: if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
vec_desire[desire] = 1 vec_desire[desire] = 1
# Enable/disable nav features # Enable/disable nav features
@ -244,13 +258,15 @@ def main():
model_execution_time = mt2 - mt1 model_execution_time = mt2 - mt1
if model_output is not None: if model_output is not None:
pm.send("modelV2", create_model_msg(model_output, state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio, modelv2_send = messaging.new_message('modelV2')
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)) posenet_send = messaging.new_message('cameraOdometry')
pm.send("cameraOdometry", create_pose_msg(model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)) fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)
fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
pm.send('modelV2', modelv2_send)
pm.send('cameraOdometry', posenet_send)
# print("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f" %
# ((mt2 - mt1)*1000, (mt1 - last)*1000, meta_extra.frame_id, frame_id, frame_drop_ratio))
# last = mt1
last_vipc_frame_id = meta_main.frame_id last_vipc_frame_id = meta_main.frame_id

@ -20,7 +20,11 @@ To view the architecture of the ONNX networks, you can use [netron](https://netr
* **traffic convention** * **traffic convention**
* one-hot encoded vector to tell model whether traffic is right-hand or left-hand traffic : 2 * one-hot encoded vector to tell model whether traffic is right-hand or left-hand traffic : 2
* **feature buffer** * **feature buffer**
* A buffer of intermediate features that gets appended to the current feature to form a 5 seconds temporal context (at 20FPS) : 99 * 128 * A buffer of intermediate features that gets appended to the current feature to form a 5 seconds temporal context (at 20FPS) : 99 * 512
* **nav features**
* 1 * 150
* **nav instructions**
* 1 * 256
### Supercombo output format (Full size: XXX x float32) ### Supercombo output format (Full size: XXX x float32)

@ -1,330 +0,0 @@
#include "selfdrive/modeld/models/driving.h"
#include <cstring>
void fill_lead(cereal::ModelDataV2::LeadDataV3::Builder lead, const ModelOutputLeads &leads, int t_idx, float prob_t) {
std::array<float, LEAD_TRAJ_LEN> lead_t = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
const auto &best_prediction = leads.get_best_prediction(t_idx);
lead.setProb(sigmoid(leads.prob[t_idx]));
lead.setProbTime(prob_t);
std::array<float, LEAD_TRAJ_LEN> lead_x, lead_y, lead_v, lead_a;
std::array<float, LEAD_TRAJ_LEN> lead_x_std, lead_y_std, lead_v_std, lead_a_std;
for (int i=0; i<LEAD_TRAJ_LEN; i++) {
lead_x[i] = best_prediction.mean[i].x;
lead_y[i] = best_prediction.mean[i].y;
lead_v[i] = best_prediction.mean[i].velocity;
lead_a[i] = best_prediction.mean[i].acceleration;
lead_x_std[i] = exp(best_prediction.std[i].x);
lead_y_std[i] = exp(best_prediction.std[i].y);
lead_v_std[i] = exp(best_prediction.std[i].velocity);
lead_a_std[i] = exp(best_prediction.std[i].acceleration);
}
lead.setT(to_kj_array_ptr(lead_t));
lead.setX(to_kj_array_ptr(lead_x));
lead.setY(to_kj_array_ptr(lead_y));
lead.setV(to_kj_array_ptr(lead_v));
lead.setA(to_kj_array_ptr(lead_a));
lead.setXStd(to_kj_array_ptr(lead_x_std));
lead.setYStd(to_kj_array_ptr(lead_y_std));
lead.setVStd(to_kj_array_ptr(lead_v_std));
lead.setAStd(to_kj_array_ptr(lead_a_std));
}
void fill_meta(cereal::ModelDataV2::MetaData::Builder meta, const ModelOutputMeta &meta_data, PublishState &ps) {
std::array<float, DESIRE_LEN> desire_state_softmax;
softmax(meta_data.desire_state_prob.array.data(), desire_state_softmax.data(), DESIRE_LEN);
std::array<float, DESIRE_PRED_LEN * DESIRE_LEN> desire_pred_softmax;
for (int i=0; i<DESIRE_PRED_LEN; i++) {
softmax(meta_data.desire_pred_prob[i].array.data(), desire_pred_softmax.data() + (i * DESIRE_LEN), DESIRE_LEN);
}
std::array<float, DISENGAGE_LEN> lat_long_t = {2, 4, 6, 8, 10};
std::array<float, DISENGAGE_LEN> gas_disengage_sigmoid, brake_disengage_sigmoid, steer_override_sigmoid,
brake_3ms2_sigmoid, brake_4ms2_sigmoid, brake_5ms2_sigmoid;
for (int i=0; i<DISENGAGE_LEN; i++) {
gas_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_disengage);
brake_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_disengage);
steer_override_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].steer_override);
brake_3ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_3ms2);
brake_4ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_4ms2);
brake_5ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_5ms2);
//gas_pressed_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_pressed);
}
std::memmove(ps.prev_brake_5ms2_probs.data(), &ps.prev_brake_5ms2_probs[1], 4*sizeof(float));
std::memmove(ps.prev_brake_3ms2_probs.data(), &ps.prev_brake_3ms2_probs[1], 2*sizeof(float));
ps.prev_brake_5ms2_probs[4] = brake_5ms2_sigmoid[0];
ps.prev_brake_3ms2_probs[2] = brake_3ms2_sigmoid[0];
bool above_fcw_threshold = true;
for (int i=0; i<ps.prev_brake_5ms2_probs.size(); i++) {
float threshold = i < 2 ? FCW_THRESHOLD_5MS2_LOW : FCW_THRESHOLD_5MS2_HIGH;
above_fcw_threshold = above_fcw_threshold && ps.prev_brake_5ms2_probs[i] > threshold;
}
for (int i=0; i<ps.prev_brake_3ms2_probs.size(); i++) {
above_fcw_threshold = above_fcw_threshold && ps.prev_brake_3ms2_probs[i] > FCW_THRESHOLD_3MS2;
}
auto disengage = meta.initDisengagePredictions();
disengage.setT(to_kj_array_ptr(lat_long_t));
disengage.setGasDisengageProbs(to_kj_array_ptr(gas_disengage_sigmoid));
disengage.setBrakeDisengageProbs(to_kj_array_ptr(brake_disengage_sigmoid));
disengage.setSteerOverrideProbs(to_kj_array_ptr(steer_override_sigmoid));
disengage.setBrake3MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_3ms2_sigmoid));
disengage.setBrake4MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_4ms2_sigmoid));
disengage.setBrake5MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_5ms2_sigmoid));
meta.setEngagedProb(sigmoid(meta_data.engaged_prob));
meta.setDesirePrediction(to_kj_array_ptr(desire_pred_softmax));
meta.setDesireState(to_kj_array_ptr(desire_state_softmax));
meta.setHardBrakePredicted(above_fcw_threshold);
}
void fill_confidence(cereal::ModelDataV2::Builder &framed, PublishState &ps) {
if (framed.getFrameId() % (2*MODEL_FREQ) == 0) {
// update every 2s to match predictions interval
auto dbps = framed.getMeta().getDisengagePredictions().getBrakeDisengageProbs();
auto dgps = framed.getMeta().getDisengagePredictions().getGasDisengageProbs();
auto dsps = framed.getMeta().getDisengagePredictions().getSteerOverrideProbs();
float any_dp[DISENGAGE_LEN];
float dp_ind[DISENGAGE_LEN];
for (int i = 0; i < DISENGAGE_LEN; i++) {
any_dp[i] = 1 - ((1-dbps[i])*(1-dgps[i])*(1-dsps[i])); // any disengage prob
}
dp_ind[0] = any_dp[0];
for (int i = 0; i < DISENGAGE_LEN-1; i++) {
dp_ind[i+1] = (any_dp[i+1] - any_dp[i]) / (1 - any_dp[i]); // independent disengage prob for each 2s slice
}
// rolling buf for 2, 4, 6, 8, 10s
std::memmove(&ps.disengage_buffer[0], &ps.disengage_buffer[DISENGAGE_LEN], sizeof(float) * DISENGAGE_LEN * (DISENGAGE_LEN-1));
std::memcpy(&ps.disengage_buffer[DISENGAGE_LEN * (DISENGAGE_LEN-1)], &dp_ind[0], sizeof(float) * DISENGAGE_LEN);
}
float score = 0;
for (int i = 0; i < DISENGAGE_LEN; i++) {
score += ps.disengage_buffer[i*DISENGAGE_LEN+DISENGAGE_LEN-1-i] / DISENGAGE_LEN;
}
if (score < RYG_GREEN) {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::GREEN);
} else if (score < RYG_YELLOW) {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::YELLOW);
} else {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::RED);
}
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z) {
xyzt.setT(to_kj_array_ptr(t));
xyzt.setX(to_kj_array_ptr(x));
xyzt.setY(to_kj_array_ptr(y));
xyzt.setZ(to_kj_array_ptr(z));
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z,
const std::array<float, size> &x_std, const std::array<float, size> &y_std, const std::array<float, size> &z_std) {
fill_xyzt(xyzt, t, x, y, z);
xyzt.setXStd(to_kj_array_ptr(x_std));
xyzt.setYStd(to_kj_array_ptr(y_std));
xyzt.setZStd(to_kj_array_ptr(z_std));
}
void fill_plan(cereal::ModelDataV2::Builder &framed, const ModelOutputPlanPrediction &plan) {
std::array<float, TRAJECTORY_SIZE> pos_x, pos_y, pos_z;
std::array<float, TRAJECTORY_SIZE> pos_x_std, pos_y_std, pos_z_std;
std::array<float, TRAJECTORY_SIZE> vel_x, vel_y, vel_z;
std::array<float, TRAJECTORY_SIZE> rot_x, rot_y, rot_z;
std::array<float, TRAJECTORY_SIZE> acc_x, acc_y, acc_z;
std::array<float, TRAJECTORY_SIZE> rot_rate_x, rot_rate_y, rot_rate_z;
for (int i=0; i<TRAJECTORY_SIZE; i++) {
pos_x[i] = plan.mean[i].position.x;
pos_y[i] = plan.mean[i].position.y;
pos_z[i] = plan.mean[i].position.z;
pos_x_std[i] = exp(plan.std[i].position.x);
pos_y_std[i] = exp(plan.std[i].position.y);
pos_z_std[i] = exp(plan.std[i].position.z);
vel_x[i] = plan.mean[i].velocity.x;
vel_y[i] = plan.mean[i].velocity.y;
vel_z[i] = plan.mean[i].velocity.z;
acc_x[i] = plan.mean[i].acceleration.x;
acc_y[i] = plan.mean[i].acceleration.y;
acc_z[i] = plan.mean[i].acceleration.z;
rot_x[i] = plan.mean[i].rotation.x;
rot_y[i] = plan.mean[i].rotation.y;
rot_z[i] = plan.mean[i].rotation.z;
rot_rate_x[i] = plan.mean[i].rotation_rate.x;
rot_rate_y[i] = plan.mean[i].rotation_rate.y;
rot_rate_z[i] = plan.mean[i].rotation_rate.z;
}
fill_xyzt(framed.initPosition(), T_IDXS_FLOAT, pos_x, pos_y, pos_z, pos_x_std, pos_y_std, pos_z_std);
fill_xyzt(framed.initVelocity(), T_IDXS_FLOAT, vel_x, vel_y, vel_z);
fill_xyzt(framed.initAcceleration(), T_IDXS_FLOAT, acc_x, acc_y, acc_z);
fill_xyzt(framed.initOrientation(), T_IDXS_FLOAT, rot_x, rot_y, rot_z);
fill_xyzt(framed.initOrientationRate(), T_IDXS_FLOAT, rot_rate_x, rot_rate_y, rot_rate_z);
}
void fill_lane_lines(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputLaneLines &lanes) {
std::array<float, TRAJECTORY_SIZE> left_far_y, left_far_z;
std::array<float, TRAJECTORY_SIZE> left_near_y, left_near_z;
std::array<float, TRAJECTORY_SIZE> right_near_y, right_near_z;
std::array<float, TRAJECTORY_SIZE> right_far_y, right_far_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_far_y[j] = lanes.mean.left_far[j].y;
left_far_z[j] = lanes.mean.left_far[j].z;
left_near_y[j] = lanes.mean.left_near[j].y;
left_near_z[j] = lanes.mean.left_near[j].z;
right_near_y[j] = lanes.mean.right_near[j].y;
right_near_z[j] = lanes.mean.right_near[j].z;
right_far_y[j] = lanes.mean.right_far[j].y;
right_far_z[j] = lanes.mean.right_far[j].z;
}
auto lane_lines = framed.initLaneLines(4);
fill_xyzt(lane_lines[0], plan_t, X_IDXS_FLOAT, left_far_y, left_far_z);
fill_xyzt(lane_lines[1], plan_t, X_IDXS_FLOAT, left_near_y, left_near_z);
fill_xyzt(lane_lines[2], plan_t, X_IDXS_FLOAT, right_near_y, right_near_z);
fill_xyzt(lane_lines[3], plan_t, X_IDXS_FLOAT, right_far_y, right_far_z);
framed.setLaneLineStds({
exp(lanes.std.left_far[0].y),
exp(lanes.std.left_near[0].y),
exp(lanes.std.right_near[0].y),
exp(lanes.std.right_far[0].y),
});
framed.setLaneLineProbs({
sigmoid(lanes.prob.left_far.val),
sigmoid(lanes.prob.left_near.val),
sigmoid(lanes.prob.right_near.val),
sigmoid(lanes.prob.right_far.val),
});
}
void fill_road_edges(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputRoadEdges &edges) {
std::array<float, TRAJECTORY_SIZE> left_y, left_z;
std::array<float, TRAJECTORY_SIZE> right_y, right_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_y[j] = edges.mean.left[j].y;
left_z[j] = edges.mean.left[j].z;
right_y[j] = edges.mean.right[j].y;
right_z[j] = edges.mean.right[j].z;
}
auto road_edges = framed.initRoadEdges(2);
fill_xyzt(road_edges[0], plan_t, X_IDXS_FLOAT, left_y, left_z);
fill_xyzt(road_edges[1], plan_t, X_IDXS_FLOAT, right_y, right_z);
framed.setRoadEdgeStds({
exp(edges.std.left[0].y),
exp(edges.std.right[0].y),
});
}
void fill_model(cereal::ModelDataV2::Builder &framed, const ModelOutput &net_outputs, PublishState &ps) {
const auto &best_plan = net_outputs.plans.get_best_prediction();
std::array<float, TRAJECTORY_SIZE> plan_t;
std::fill_n(plan_t.data(), plan_t.size(), NAN);
plan_t[0] = 0.0;
for (int xidx=1, tidx=0; xidx<TRAJECTORY_SIZE; xidx++) {
// increment tidx until we find an element that's further away than the current xidx
for (int next_tid = tidx + 1; next_tid < TRAJECTORY_SIZE && best_plan.mean[next_tid].position.x < X_IDXS[xidx]; next_tid++) {
tidx++;
}
if (tidx == TRAJECTORY_SIZE - 1) {
// if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
plan_t[xidx] = T_IDXS[TRAJECTORY_SIZE - 1];
break;
}
// interpolate to find `t` for the current xidx
float current_x_val = best_plan.mean[tidx].position.x;
float next_x_val = best_plan.mean[tidx+1].position.x;
float p = (X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val);
plan_t[xidx] = p * T_IDXS[tidx+1] + (1 - p) * T_IDXS[tidx];
}
fill_plan(framed, best_plan);
fill_lane_lines(framed, plan_t, net_outputs.lane_lines);
fill_road_edges(framed, plan_t, net_outputs.road_edges);
// meta
fill_meta(framed.initMeta(), net_outputs.meta, ps);
// confidence
fill_confidence(framed, ps);
// leads
auto leads = framed.initLeadsV3(LEAD_MHP_SELECTION);
std::array<float, LEAD_MHP_SELECTION> t_offsets = {0.0, 2.0, 4.0};
for (int i=0; i<LEAD_MHP_SELECTION; i++) {
fill_lead(leads[i], net_outputs.leads, i, t_offsets[i]);
}
// temporal pose
const auto &v_mean = net_outputs.temporal_pose.velocity_mean;
const auto &r_mean = net_outputs.temporal_pose.rotation_mean;
const auto &v_std = net_outputs.temporal_pose.velocity_std;
const auto &r_std = net_outputs.temporal_pose.rotation_std;
auto temporal_pose = framed.initTemporalPose();
temporal_pose.setTrans({v_mean.x, v_mean.y, v_mean.z});
temporal_pose.setRot({r_mean.x, r_mean.y, r_mean.z});
temporal_pose.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
temporal_pose.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
}
void fill_model_msg(MessageBuilder &msg, float *net_output_data, PublishState &ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, const bool nav_enabled, const bool valid) {
const uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0;
auto framed = msg.initEvent(valid).initModelV2();
framed.setFrameId(vipc_frame_id);
framed.setFrameIdExtra(vipc_frame_id_extra);
framed.setFrameAge(frame_age);
framed.setFrameDropPerc(frame_drop * 100);
framed.setTimestampEof(timestamp_eof);
framed.setLocationMonoTime(timestamp_llk);
framed.setModelExecutionTime(model_execution_time);
framed.setNavEnabled(nav_enabled);
if (send_raw_pred) {
framed.setRawPredictions(kj::ArrayPtr<const float>(net_output_data, NET_OUTPUT_SIZE).asBytes());
}
fill_model(framed, *((ModelOutput*) net_output_data), ps);
}
void fill_pose_msg(MessageBuilder &msg, float *net_output_data, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, const bool valid) {
const ModelOutput &net_outputs = *((ModelOutput*) net_output_data);
const auto &v_mean = net_outputs.pose.velocity_mean;
const auto &r_mean = net_outputs.pose.rotation_mean;
const auto &t_mean = net_outputs.wide_from_device_euler.mean;
const auto &v_std = net_outputs.pose.velocity_std;
const auto &r_std = net_outputs.pose.rotation_std;
const auto &t_std = net_outputs.wide_from_device_euler.std;
const auto &road_transform_trans_mean = net_outputs.road_transform.position_mean;
const auto &road_transform_trans_std = net_outputs.road_transform.position_std;
auto posenetd = msg.initEvent(valid && (vipc_dropped_frames < 1)).initCameraOdometry();
posenetd.setTrans({v_mean.x, v_mean.y, v_mean.z});
posenetd.setRot({r_mean.x, r_mean.y, r_mean.z});
posenetd.setWideFromDeviceEuler({t_mean.x, t_mean.y, t_mean.z});
posenetd.setRoadTransformTrans({road_transform_trans_mean.x, road_transform_trans_mean.y, road_transform_trans_mean.z});
posenetd.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
posenetd.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
posenetd.setWideFromDeviceEulerStd({exp(t_std.x), exp(t_std.y), exp(t_std.z)});
posenetd.setRoadTransformTransStd({exp(road_transform_trans_std.x), exp(road_transform_trans_std.y), exp(road_transform_trans_std.z)});
posenetd.setTimestampEof(timestamp_eof);
posenetd.setFrameId(vipc_frame_id);
}

@ -1,257 +0,0 @@
#pragma once
#include <array>
#include <memory>
#include "cereal/messaging/messaging.h"
#include "common/modeldata.h"
#include "common/util.h"
#include "selfdrive/modeld/models/commonmodel.h"
#include "selfdrive/modeld/runners/run.h"
constexpr int FEATURE_LEN = 512;
constexpr int HISTORY_BUFFER_LEN = 99;
constexpr int DESIRE_LEN = 8;
constexpr int DESIRE_PRED_LEN = 4;
constexpr int TRAFFIC_CONVENTION_LEN = 2;
constexpr int NAV_FEATURE_LEN = 256;
constexpr int NAV_INSTRUCTION_LEN = 150;
constexpr int DRIVING_STYLE_LEN = 12;
constexpr int MODEL_FREQ = 20;
constexpr int DISENGAGE_LEN = 5;
constexpr int BLINKER_LEN = 6;
constexpr int META_STRIDE = 7;
constexpr int PLAN_MHP_N = 5;
constexpr int LEAD_MHP_N = 2;
constexpr int LEAD_TRAJ_LEN = 6;
constexpr int LEAD_MHP_SELECTION = 3;
// Padding to get output shape as multiple of 4
constexpr int PAD_SIZE = 2;
constexpr float FCW_THRESHOLD_5MS2_HIGH = 0.15;
constexpr float FCW_THRESHOLD_5MS2_LOW = 0.05;
constexpr float FCW_THRESHOLD_3MS2 = 0.7;
struct ModelOutputXYZ {
float x;
float y;
float z;
};
static_assert(sizeof(ModelOutputXYZ) == sizeof(float)*3);
struct ModelOutputYZ {
float y;
float z;
};
static_assert(sizeof(ModelOutputYZ) == sizeof(float)*2);
struct ModelOutputPlanElement {
ModelOutputXYZ position;
ModelOutputXYZ velocity;
ModelOutputXYZ acceleration;
ModelOutputXYZ rotation;
ModelOutputXYZ rotation_rate;
};
static_assert(sizeof(ModelOutputPlanElement) == sizeof(ModelOutputXYZ)*5);
struct ModelOutputPlanPrediction {
std::array<ModelOutputPlanElement, TRAJECTORY_SIZE> mean;
std::array<ModelOutputPlanElement, TRAJECTORY_SIZE> std;
float prob;
};
static_assert(sizeof(ModelOutputPlanPrediction) == (sizeof(ModelOutputPlanElement)*TRAJECTORY_SIZE*2) + sizeof(float));
struct ModelOutputPlans {
std::array<ModelOutputPlanPrediction, PLAN_MHP_N> prediction;
constexpr const ModelOutputPlanPrediction &get_best_prediction() const {
int max_idx = 0;
for (int i = 1; i < prediction.size(); i++) {
if (prediction[i].prob > prediction[max_idx].prob) {
max_idx = i;
}
}
return prediction[max_idx];
}
};
static_assert(sizeof(ModelOutputPlans) == sizeof(ModelOutputPlanPrediction)*PLAN_MHP_N);
struct ModelOutputLinesXY {
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left_far;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left_near;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right_near;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right_far;
};
static_assert(sizeof(ModelOutputLinesXY) == sizeof(ModelOutputYZ)*TRAJECTORY_SIZE*4);
struct ModelOutputLineProbVal {
float val_deprecated;
float val;
};
static_assert(sizeof(ModelOutputLineProbVal) == sizeof(float)*2);
struct ModelOutputLinesProb {
ModelOutputLineProbVal left_far;
ModelOutputLineProbVal left_near;
ModelOutputLineProbVal right_near;
ModelOutputLineProbVal right_far;
};
static_assert(sizeof(ModelOutputLinesProb) == sizeof(ModelOutputLineProbVal)*4);
struct ModelOutputLaneLines {
ModelOutputLinesXY mean;
ModelOutputLinesXY std;
ModelOutputLinesProb prob;
};
static_assert(sizeof(ModelOutputLaneLines) == (sizeof(ModelOutputLinesXY)*2) + sizeof(ModelOutputLinesProb));
struct ModelOutputEdgessXY {
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right;
};
static_assert(sizeof(ModelOutputEdgessXY) == sizeof(ModelOutputYZ)*TRAJECTORY_SIZE*2);
struct ModelOutputRoadEdges {
ModelOutputEdgessXY mean;
ModelOutputEdgessXY std;
};
static_assert(sizeof(ModelOutputRoadEdges) == (sizeof(ModelOutputEdgessXY)*2));
struct ModelOutputLeadElement {
float x;
float y;
float velocity;
float acceleration;
};
static_assert(sizeof(ModelOutputLeadElement) == sizeof(float)*4);
struct ModelOutputLeadPrediction {
std::array<ModelOutputLeadElement, LEAD_TRAJ_LEN> mean;
std::array<ModelOutputLeadElement, LEAD_TRAJ_LEN> std;
std::array<float, LEAD_MHP_SELECTION> prob;
};
static_assert(sizeof(ModelOutputLeadPrediction) == (sizeof(ModelOutputLeadElement)*LEAD_TRAJ_LEN*2) + (sizeof(float)*LEAD_MHP_SELECTION));
struct ModelOutputLeads {
std::array<ModelOutputLeadPrediction, LEAD_MHP_N> prediction;
std::array<float, LEAD_MHP_SELECTION> prob;
constexpr const ModelOutputLeadPrediction &get_best_prediction(int t_idx) const {
int max_idx = 0;
for (int i = 1; i < prediction.size(); i++) {
if (prediction[i].prob[t_idx] > prediction[max_idx].prob[t_idx]) {
max_idx = i;
}
}
return prediction[max_idx];
}
};
static_assert(sizeof(ModelOutputLeads) == (sizeof(ModelOutputLeadPrediction)*LEAD_MHP_N) + (sizeof(float)*LEAD_MHP_SELECTION));
struct ModelOutputPose {
ModelOutputXYZ velocity_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ velocity_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputPose) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputWideFromDeviceEuler {
ModelOutputXYZ mean;
ModelOutputXYZ std;
};
static_assert(sizeof(ModelOutputWideFromDeviceEuler) == sizeof(ModelOutputXYZ)*2);
struct ModelOutputTemporalPose {
ModelOutputXYZ velocity_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ velocity_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputTemporalPose) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputRoadTransform {
ModelOutputXYZ position_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ position_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputRoadTransform) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputDisengageProb {
float gas_disengage;
float brake_disengage;
float steer_override;
float brake_3ms2;
float brake_4ms2;
float brake_5ms2;
float gas_pressed;
};
static_assert(sizeof(ModelOutputDisengageProb) == sizeof(float)*7);
struct ModelOutputBlinkerProb {
float left;
float right;
};
static_assert(sizeof(ModelOutputBlinkerProb) == sizeof(float)*2);
struct ModelOutputDesireProb {
union {
struct {
float none;
float turn_left;
float turn_right;
float lane_change_left;
float lane_change_right;
float keep_left;
float keep_right;
float null;
};
struct {
std::array<float, DESIRE_LEN> array;
};
};
};
static_assert(sizeof(ModelOutputDesireProb) == sizeof(float)*DESIRE_LEN);
struct ModelOutputMeta {
ModelOutputDesireProb desire_state_prob;
float engaged_prob;
std::array<ModelOutputDisengageProb, DISENGAGE_LEN> disengage_prob;
std::array<ModelOutputBlinkerProb, BLINKER_LEN> blinker_prob;
std::array<ModelOutputDesireProb, DESIRE_PRED_LEN> desire_pred_prob;
};
static_assert(sizeof(ModelOutputMeta) == sizeof(ModelOutputDesireProb) + sizeof(float) + (sizeof(ModelOutputDisengageProb)*DISENGAGE_LEN) + (sizeof(ModelOutputBlinkerProb)*BLINKER_LEN) + (sizeof(ModelOutputDesireProb)*DESIRE_PRED_LEN));
struct ModelOutputFeatures {
std::array<float, FEATURE_LEN> feature;
};
static_assert(sizeof(ModelOutputFeatures) == (sizeof(float)*FEATURE_LEN));
struct ModelOutput {
const ModelOutputPlans plans;
const ModelOutputLaneLines lane_lines;
const ModelOutputRoadEdges road_edges;
const ModelOutputLeads leads;
const ModelOutputMeta meta;
const ModelOutputPose pose;
const ModelOutputWideFromDeviceEuler wide_from_device_euler;
const ModelOutputTemporalPose temporal_pose;
const ModelOutputRoadTransform road_transform;
};
constexpr int OUTPUT_SIZE = sizeof(ModelOutput) / sizeof(float);
constexpr int NET_OUTPUT_SIZE = OUTPUT_SIZE + FEATURE_LEN + PAD_SIZE;
struct PublishState {
std::array<float, DISENGAGE_LEN * DISENGAGE_LEN> disengage_buffer = {};
std::array<float, 5> prev_brake_5ms2_probs = {};
std::array<float, 3> prev_brake_3ms2_probs = {};
};
void fill_model_msg(MessageBuilder &msg, float *net_output_data, PublishState &ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, const bool nav_enabled, const bool valid);
void fill_pose_msg(MessageBuilder &msg, float *net_outputs, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, const bool valid);

@ -1,25 +0,0 @@
# distutils: language = c++
from libcpp cimport bool
from libc.stdint cimport uint32_t, uint64_t
cdef extern from "cereal/messaging/messaging.h":
cdef cppclass MessageBuilder:
size_t getSerializedSize()
int serializeToBuffer(unsigned char *, size_t)
cdef extern from "selfdrive/modeld/models/driving.h":
cdef int FEATURE_LEN
cdef int HISTORY_BUFFER_LEN
cdef int DESIRE_LEN
cdef int TRAFFIC_CONVENTION_LEN
cdef int DRIVING_STYLE_LEN
cdef int NAV_FEATURE_LEN
cdef int NAV_INSTRUCTION_LEN
cdef int OUTPUT_SIZE
cdef int NET_OUTPUT_SIZE
cdef int MODEL_FREQ
cdef struct PublishState: pass
void fill_model_msg(MessageBuilder, float *, PublishState, uint32_t, uint32_t, uint32_t, float, uint64_t, uint64_t, float, bool, bool)
void fill_pose_msg(MessageBuilder, float *, uint32_t, uint32_t, uint64_t, bool)

@ -1,52 +0,0 @@
# distutils: language = c++
# cython: c_string_encoding=ascii
import numpy as np
cimport numpy as cnp
from libcpp cimport bool
from libc.string cimport memcpy
from libc.stdint cimport uint32_t, uint64_t
from .commonmodel cimport mat3
from .driving cimport FEATURE_LEN as CPP_FEATURE_LEN, HISTORY_BUFFER_LEN as CPP_HISTORY_BUFFER_LEN, DESIRE_LEN as CPP_DESIRE_LEN, \
TRAFFIC_CONVENTION_LEN as CPP_TRAFFIC_CONVENTION_LEN, DRIVING_STYLE_LEN as CPP_DRIVING_STYLE_LEN, \
NAV_FEATURE_LEN as CPP_NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN as CPP_NAV_INSTRUCTION_LEN, \
OUTPUT_SIZE as CPP_OUTPUT_SIZE, NET_OUTPUT_SIZE as CPP_NET_OUTPUT_SIZE, MODEL_FREQ as CPP_MODEL_FREQ
from .driving cimport MessageBuilder, PublishState as cppPublishState
from .driving cimport fill_model_msg, fill_pose_msg
FEATURE_LEN = CPP_FEATURE_LEN
HISTORY_BUFFER_LEN = CPP_HISTORY_BUFFER_LEN
DESIRE_LEN = CPP_DESIRE_LEN
TRAFFIC_CONVENTION_LEN = CPP_TRAFFIC_CONVENTION_LEN
DRIVING_STYLE_LEN = CPP_DRIVING_STYLE_LEN
NAV_FEATURE_LEN = CPP_NAV_FEATURE_LEN
NAV_INSTRUCTION_LEN = CPP_NAV_INSTRUCTION_LEN
OUTPUT_SIZE = CPP_OUTPUT_SIZE
NET_OUTPUT_SIZE = CPP_NET_OUTPUT_SIZE
MODEL_FREQ = CPP_MODEL_FREQ
cdef class PublishState:
cdef cppPublishState state
def create_model_msg(float[:] model_outputs, PublishState ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, bool nav_enabled, bool valid):
cdef MessageBuilder msg
fill_model_msg(msg, &model_outputs[0], ps.state, vipc_frame_id, vipc_frame_id_extra, frame_id, frame_drop,
timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, valid)
output_size = msg.getSerializedSize()
output_data = bytearray(output_size)
cdef unsigned char * output_ptr = output_data
assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize"
return bytes(output_data)
def create_pose_msg(float[:] model_outputs, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, bool valid):
cdef MessageBuilder msg
fill_pose_msg(msg, &model_outputs[0], vipc_frame_id, vipc_dropped_frames, timestamp_eof, valid)
output_size = msg.getSerializedSize()
output_data = bytearray(output_size)
cdef unsigned char * output_ptr = output_data
assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize"
return bytes(output_data)

@ -13,13 +13,13 @@ from cereal.visionipc import VisionIpcClient, VisionStreamType
from openpilot.system.swaglog import cloudlog from openpilot.system.swaglog import cloudlog
from openpilot.common.params import Params from openpilot.common.params import Params
from openpilot.common.realtime import set_realtime_priority from openpilot.common.realtime import set_realtime_priority
from openpilot.selfdrive.modeld.constants import IDX_N from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
NAV_INPUT_SIZE = 256*256 NAV_INPUT_SIZE = 256*256
NAV_FEATURE_LEN = 256 NAV_FEATURE_LEN = 256
NAV_DESIRE_LEN = 32 NAV_DESIRE_LEN = 32
NAV_OUTPUT_SIZE = 2*2*IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN NAV_OUTPUT_SIZE = 2*2*ModelConstants.IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN
MODEL_PATHS = { MODEL_PATHS = {
ModelRunner.SNPE: Path(__file__).parent / 'models/navmodel_q.dlc', ModelRunner.SNPE: Path(__file__).parent / 'models/navmodel_q.dlc',
ModelRunner.ONNX: Path(__file__).parent / 'models/navmodel.onnx'} ModelRunner.ONNX: Path(__file__).parent / 'models/navmodel.onnx'}
@ -31,8 +31,8 @@ class NavModelOutputXY(ctypes.Structure):
class NavModelOutputPlan(ctypes.Structure): class NavModelOutputPlan(ctypes.Structure):
_fields_ = [ _fields_ = [
("mean", NavModelOutputXY*IDX_N), ("mean", NavModelOutputXY*ModelConstants.IDX_N),
("std", NavModelOutputXY*IDX_N)] ("std", NavModelOutputXY*ModelConstants.IDX_N)]
class NavModelResult(ctypes.Structure): class NavModelResult(ctypes.Structure):
_fields_ = [ _fields_ = [

@ -0,0 +1,100 @@
import numpy as np
from typing import Dict
from openpilot.selfdrive.modeld.constants import ModelConstants
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def softmax(x, axis=-1):
x -= np.max(x, axis=axis, keepdims=True)
if x.dtype == np.float32 or x.dtype == np.float64:
np.exp(x, out=x)
else:
x = np.exp(x)
x /= np.sum(x, axis=axis, keepdims=True)
return x
class Parser:
def __init__(self, ignore_missing=False):
self.ignore_missing = ignore_missing
def check_missing(self, outs, name):
if name not in outs and not self.ignore_missing:
raise ValueError(f"Missing output {name}")
return name not in outs
def parse_categorical_crossentropy(self, name, outs, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
if out_shape is not None:
raw = raw.reshape((raw.shape[0],) + out_shape)
outs[name] = softmax(raw, axis=-1)
def parse_binary_crossentropy(self, name, outs):
if self.check_missing(outs, name):
return
raw = outs[name]
outs[name] = sigmoid(raw)
def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
pred_mu = raw[:,:,:(raw.shape[2] - out_N)//2]
n_values = (raw.shape[2] - out_N)//2
pred_mu = raw[:,:,:n_values]
pred_std = np.exp(raw[:,:,n_values: 2*n_values])
if in_N > 1:
weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
for i in range(out_N):
weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
if out_N == 1:
for fidx in range(weights.shape[0]):
idxs = np.argsort(weights[fidx][:,0])[::-1]
weights[fidx] = weights[fidx][idxs]
pred_mu[fidx] = pred_mu[fidx][idxs]
pred_std[fidx] = pred_std[fidx][idxs]
full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
outs[name + '_weights'] = weights
outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
for fidx in range(weights.shape[0]):
for hidx in range(out_N):
idxs = np.argsort(weights[fidx,:,hidx])[::-1]
pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
else:
pred_mu_final = pred_mu
pred_std_final = pred_std
if out_N > 1:
final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
else:
final_shape = tuple([raw.shape[0],] + list(out_shape))
outs[name] = pred_mu_final.reshape(final_shape)
outs[name + '_stds'] = pred_std_final.reshape(final_shape)
def parse_outputs(self, outs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
return outs

@ -1,32 +0,0 @@
import struct
import json
def load_thneed(fn):
with open(fn, "rb") as f:
json_len = struct.unpack("I", f.read(4))[0]
jdat = json.loads(f.read(json_len).decode('latin_1'))
weights = f.read()
ptr = 0
for o in jdat['objects']:
if o['needs_load']:
nptr = ptr + o['size']
o['data'] = weights[ptr:nptr]
ptr = nptr
for o in jdat['binaries']:
nptr = ptr + o['length']
o['data'] = weights[ptr:nptr]
ptr = nptr
return jdat
def save_thneed(jdat, fn):
new_weights = []
for o in jdat['objects'] + jdat['binaries']:
if 'data' in o:
new_weights.append(o['data'])
del o['data']
new_weights_bytes = b''.join(new_weights)
with open(fn, "wb") as f:
j = json.dumps(jdat, ensure_ascii=False).encode('latin_1')
f.write(struct.pack("I", len(j)))
f.write(j)
f.write(new_weights_bytes)

@ -6,7 +6,7 @@ from cereal import log
import cereal.messaging as messaging import cereal.messaging as messaging
from openpilot.common.realtime import Ratekeeper, DT_MDL from openpilot.common.realtime import Ratekeeper, DT_MDL
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.modeld.constants import T_IDXS from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
@ -100,13 +100,13 @@ class Plant:
# this is to ensure lead policy is effective when model # this is to ensure lead policy is effective when model
# does not predict slowdown in e2e mode # does not predict slowdown in e2e mode
position = log.XYZTData.new_message() position = log.XYZTData.new_message()
position.x = [float(x) for x in (self.speed + 0.5) * np.array(T_IDXS)] position.x = [float(x) for x in (self.speed + 0.5) * np.array(ModelConstants.T_IDXS)]
model.modelV2.position = position model.modelV2.position = position
velocity = log.XYZTData.new_message() velocity = log.XYZTData.new_message()
velocity.x = [float(x) for x in (self.speed + 0.5) * np.ones_like(T_IDXS)] velocity.x = [float(x) for x in (self.speed + 0.5) * np.ones_like(ModelConstants.T_IDXS)]
model.modelV2.velocity = velocity model.modelV2.velocity = velocity
acceleration = log.XYZTData.new_message() acceleration = log.XYZTData.new_message()
acceleration.x = [float(x) for x in np.zeros_like(T_IDXS)] acceleration.x = [float(x) for x in np.zeros_like(ModelConstants.T_IDXS)]
model.modelV2.acceleration = acceleration model.modelV2.acceleration = acceleration
control.controlsState.longControlState = LongCtrlState.pid if self.enabled else LongCtrlState.off control.controlsState.longControlState = LongCtrlState.pid if self.enabled else LongCtrlState.off

@ -1 +1 @@
f851c7e7f90eff828a59444d20fac5df8cd7ae0c 0e0f55cf3bb2cf79b44adf190e6387a83deb6646

@ -37,7 +37,7 @@ PROCS = {
"selfdrive.locationd.paramsd": 9.0, "selfdrive.locationd.paramsd": 9.0,
"./sensord": 7.0, "./sensord": 7.0,
"selfdrive.controls.radard": 4.5, "selfdrive.controls.radard": 4.5,
"selfdrive.modeld.modeld": 8.0, "selfdrive.modeld.modeld": 13.0,
"selfdrive.modeld.dmonitoringmodeld": 8.0, "selfdrive.modeld.dmonitoringmodeld": 8.0,
"selfdrive.modeld.navmodeld": 1.0, "selfdrive.modeld.navmodeld": 1.0,
"selfdrive.thermald.thermald": 3.87, "selfdrive.thermald.thermald": 3.87,

@ -28,7 +28,7 @@ class Proc:
PROCS = [ PROCS = [
Proc('camerad', 2.1, msgs=['roadCameraState', 'wideRoadCameraState', 'driverCameraState']), Proc('camerad', 2.1, msgs=['roadCameraState', 'wideRoadCameraState', 'driverCameraState']),
Proc('modeld', 0.93, atol=0.2, msgs=['modelV2']), Proc('modeld', 1.0, atol=0.2, msgs=['modelV2']),
Proc('dmonitoringmodeld', 0.4, msgs=['driverStateV2']), Proc('dmonitoringmodeld', 0.4, msgs=['driverStateV2']),
Proc('encoderd', 0.23, msgs=[]), Proc('encoderd', 0.23, msgs=[]),
Proc('mapsd', 0.05, msgs=['mapRenderState']), Proc('mapsd', 0.05, msgs=['mapRenderState']),

@ -31,6 +31,7 @@ COPY ./panda ${OPENPILOT_PATH}/panda
COPY ./selfdrive ${OPENPILOT_PATH}/selfdrive COPY ./selfdrive ${OPENPILOT_PATH}/selfdrive
COPY ./system ${OPENPILOT_PATH}/system COPY ./system ${OPENPILOT_PATH}/system
COPY ./tools ${OPENPILOT_PATH}/tools COPY ./tools ${OPENPILOT_PATH}/tools
COPY ./release ${OPENPILOT_PATH}/release
RUN --mount=type=bind,source=.ci_cache/scons_cache,target=/tmp/scons_cache,rw scons -j$(nproc) --cache-readonly RUN --mount=type=bind,source=.ci_cache/scons_cache,target=/tmp/scons_cache,rw scons -j$(nproc) --cache-readonly

Loading…
Cancel
Save