|
|
|
@ -21,10 +21,10 @@ MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6)) |
|
|
|
|
N = len(MPC_T) - 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def RW(v_ego, v_l): |
|
|
|
|
def desired_follow_distance(v_ego, v_lead): |
|
|
|
|
TR = 1.8 |
|
|
|
|
G = 9.81 |
|
|
|
|
return (v_ego * TR - (v_l - v_ego) * TR + v_ego * v_ego / (2 * G) - v_l * v_l / (2 * G)) |
|
|
|
|
return (v_ego * TR - (v_lead - v_ego) * TR + v_ego * v_ego / (2 * G) - v_lead * v_lead / (2 * G)) + 4.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gen_lead_model(): |
|
|
|
@ -85,21 +85,16 @@ def gen_lead_mpc_solver(): |
|
|
|
|
ocp.cost.yref_e = np.zeros((3, )) |
|
|
|
|
|
|
|
|
|
x_lead, v_lead = ocp.model.p[0], ocp.model.p[1] |
|
|
|
|
G = 9.81 |
|
|
|
|
TR = 1.8 |
|
|
|
|
desired_dist = (v_ego * TR |
|
|
|
|
- (v_lead - v_ego) * TR |
|
|
|
|
+ v_ego*v_ego/(2*G) |
|
|
|
|
- v_lead * v_lead / (2*G)) |
|
|
|
|
dist_err = (desired_dist + 4.0 - (x_lead - x_ego))/(sqrt(v_ego + 0.5) + 0.1) |
|
|
|
|
desired_dist = desired_follow_distance(v_ego, v_lead) |
|
|
|
|
dist_err = (desired_dist - (x_lead - x_ego))/(sqrt(v_ego + 0.5) + 0.1) |
|
|
|
|
|
|
|
|
|
# TODO hacky weights to keep behavior the same |
|
|
|
|
ocp.model.cost_y_expr = vertcat(exp(.3 * dist_err) - 1., |
|
|
|
|
((x_lead - x_ego) - (desired_dist + 4.0)) / (0.05 * v_ego + 0.5), |
|
|
|
|
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5), |
|
|
|
|
a_ego * (.1 * v_ego + 1.0), |
|
|
|
|
j_ego * (.1 * v_ego + 1.0)) |
|
|
|
|
ocp.model.cost_y_expr_e = vertcat(exp(.3 * dist_err) - 1., |
|
|
|
|
((x_lead - x_ego) - (desired_dist + 4.0)) / (0.05 * v_ego + 0.5), |
|
|
|
|
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5), |
|
|
|
|
a_ego * (.1 * v_ego + 1.0)) |
|
|
|
|
ocp.parameter_values = np.array([0., .0]) |
|
|
|
|
|
|
|
|
|