modeld: autodetect tinygrad backend (#35405)

* modeld: autodetect tinygrad backend

* modeld: autodetect tinygrad CUDA backend

* Revert "modeld: autodetect tinygrad CUDA backend"

This reverts commit 0e9755fb3c.

* comment why llvm@19

Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com>

* backend from jit

* fix static analysis

* simplify

* compile flags log

---------

Co-authored-by: Adeeb Shihadeh <adeebshihadeh@gmail.com>
pull/35699/head
Andrei Radulescu 3 days ago committed by GitHub
parent f4b017a75b
commit ce92fd1a0f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 29
      selfdrive/modeld/SConscript
  2. 7
      selfdrive/modeld/dmonitoringmodeld.py
  3. 8
      selfdrive/modeld/modeld.py
  4. 5
      selfdrive/modeld/runners/tinygrad_helpers.py
  5. 2
      tools/mac_setup.sh

@ -14,9 +14,11 @@ common_src = [
"transforms/transform.cc",
]
# OpenCL is a framework on Mac
if arch == "Darwin":
# OpenCL is a framework on Mac
frameworks += ['OpenCL']
# Fix for METAL Error: $HOME must be set to run brew
lenv['ENV']['HOME'] = os.environ['HOME']
else:
libs += ['OpenCL']
@ -47,19 +49,30 @@ def tg_compile(flags, model_name):
f'{pythonpath_string} {flags} python3 {Dir("#tinygrad_repo").abspath}/examples/openpilot/compile3.py {fn}.onnx {fn}_tinygrad.pkl'
)
# because tg doesn't support multi-process
import subprocess
devs = subprocess.check_output('python3 -c "from tinygrad import Device; print(list(Device.get_available_devices()))"', shell=True, cwd=env.Dir('#').abspath)
print("Available tinygrad devices:", devs)
if b"QCOM" in devs:
flags = 'QCOM=1'
elif b"METAL" in devs:
flags = 'METAL=1 IMAGE=0 NOLOCALS=0'
elif b"GPU" in devs:
flags = 'GPU=1'
elif b"LLVM" in devs:
flags = 'LLVM=1 LLVMOPT=1 BEAM=0 IMAGE=0 JIT=2'
else:
flags = 'CPU=1 IMAGE=0 JIT=2'
print(f"Compiling models with flags: '{flags}'")
# Compile small models
for model_name in ['driving_vision', 'driving_policy', 'dmonitoring_model']:
flags = {
'larch64': 'QCOM=1',
'Darwin': 'CPU=1 IMAGE=0 JIT=2',
}.get(arch, 'LLVM=1 LLVMOPT=1 BEAM=0 IMAGE=0 JIT=2')
tg_compile(flags, model_name)
# Compile BIG model if USB GPU is available
if "USBGPU" in os.environ:
import subprocess
# because tg doesn't support multi-process
devs = subprocess.check_output('python3 -c "from tinygrad import Device; print(list(Device.get_available_devices()))"', shell=True, cwd=env.Dir('#').abspath)
if b"AMD" in devs:
print("USB GPU detected... building")
flags = "AMD=1 AMD_IFACE=USB AMD_LLVM=1 NOLOCALS=0 IMAGE=0"

@ -7,7 +7,7 @@ if TICI:
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
os.environ['QCOM'] = '1'
else:
os.environ['LLVM'] = '1'
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import backend_from_jit
import math
import time
import pickle
@ -79,6 +79,11 @@ class ModelState:
with open(MODEL_PKL_PATH, "rb") as f:
self.model_run = pickle.load(f)
if not TICI:
backend = backend_from_jit(self.model_run)
os.environ[backend] = '1'
cloudlog.warning(f"dmonitoringmodeld backend set to {backend}")
def run(self, buf: VisionBuf, calib: np.ndarray, transform: np.ndarray) -> tuple[np.ndarray, float]:
self.numpy_inputs['calib'][0,:] = calib

@ -9,8 +9,7 @@ elif TICI:
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
os.environ['QCOM'] = '1'
else:
os.environ['LLVM'] = '1'
os.environ['JIT'] = '2'
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import backend_from_jit
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes
import time
@ -131,6 +130,11 @@ class ModelState:
with open(POLICY_PKL_PATH, "rb") as f:
self.policy_run = pickle.load(f)
if not TICI and not USBGPU:
backend = backend_from_jit(self.vision_run)
os.environ[backend] = '1'
cloudlog.warning(f"modeld backend set to {backend}")
def slice_outputs(self, model_outputs: np.ndarray, output_slices: dict[str, slice]) -> dict[str, np.ndarray]:
parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in output_slices.items()}
return parsed_model_outputs

@ -1,4 +1,3 @@
from tinygrad.tensor import Tensor
from tinygrad.helpers import to_mv
@ -6,3 +5,7 @@ def qcom_tensor_from_opencl_address(opencl_address, shape, dtype):
cl_buf_desc_ptr = to_mv(opencl_address, 8).cast('Q')[0]
rawbuf_ptr = to_mv(cl_buf_desc_ptr, 0x100).cast('Q')[20] # offset 0xA0 is a raw gpu pointer.
return Tensor.from_blob(rawbuf_ptr, shape, dtype=dtype, device='QCOM')
def backend_from_jit(jit):
for cached_item in jit.captured.jit_cache:
return cached_item.prg.device

@ -43,7 +43,7 @@ brew "glfw"
brew "libarchive"
brew "libusb"
brew "libtool"
brew "llvm"
brew "llvm@19" # pinned for tinygrad
brew "openssl@3.0"
brew "qt@5"
brew "zeromq"

Loading…
Cancel
Save