parent
e30221e8e3
commit
d76002e7d4
4 changed files with 6 additions and 171 deletions
@ -1 +1 @@ |
||||
Subproject commit 3d8a1ff78ec4c095238e9a49717646acbc58bfa0 |
||||
Subproject commit c11017e731a8917dcabefed6fb38db365f8aaff5 |
@ -1,166 +0,0 @@ |
||||
import numpy as np |
||||
import sympy |
||||
|
||||
from laika.constants import EARTH_ROTATION_RATE, SPEED_OF_LIGHT |
||||
from laika.helpers import ConstellationId |
||||
|
||||
|
||||
def calc_pos_fix_gauss_newton(measurements, posfix_functions, x0=None, signal='C1C', min_measurements=6): |
||||
''' |
||||
Calculates gps fix using gauss newton method |
||||
To solve the problem a minimal of 4 measurements are required. |
||||
If Glonass is included 5 are required to solve for the additional free variable. |
||||
returns: |
||||
0 -> list with positions |
||||
''' |
||||
if x0 is None: |
||||
x0 = [0, 0, 0, 0, 0] |
||||
n = len(measurements) |
||||
if n < min_measurements: |
||||
return [], [] |
||||
|
||||
Fx_pos = pr_residual(measurements, posfix_functions, signal=signal) |
||||
x = gauss_newton(Fx_pos, x0) |
||||
residual, _ = Fx_pos(x, weight=1.0) |
||||
return x.tolist(), residual.tolist() |
||||
|
||||
|
||||
def pr_residual(measurements, posfix_functions, signal='C1C'): |
||||
def Fx_pos(inp, weight=None): |
||||
vals, gradients = [], [] |
||||
|
||||
for meas in measurements: |
||||
pr = meas.observables[signal] |
||||
pr += meas.sat_clock_err * SPEED_OF_LIGHT |
||||
|
||||
w = (1 / meas.observables_std[signal]) if weight is None else weight |
||||
|
||||
val, *gradient = posfix_functions[meas.constellation_id](*inp, pr, *meas.sat_pos, w) |
||||
vals.append(val) |
||||
gradients.append(gradient) |
||||
return np.asarray(vals), np.asarray(gradients) |
||||
|
||||
return Fx_pos |
||||
|
||||
|
||||
def get_prr_sympy_func(): |
||||
# implementing this without sympy.Matrix gives a 2x speedup at generation |
||||
|
||||
# knowns, receiver position, satellite position, satellite velocity |
||||
ep_x, ep_y, ep_z = sympy.Symbol('ep_x'), sympy.Symbol('ep_y'), sympy.Symbol('ep_z') |
||||
est_pos = np.array([ep_x, ep_y, ep_z]) |
||||
sp_x, sp_y, sp_z = sympy.Symbol('sp_x'), sympy.Symbol('sp_y'), sympy.Symbol('sp_z') |
||||
sat_pos = np.array([sp_x, sp_y, sp_z]) |
||||
sv_x, sv_y, sv_z = sympy.Symbol('sv_x'), sympy.Symbol('sv_y'), sympy.Symbol('sv_z') |
||||
sat_vel = np.array([sv_x, sv_y, sv_z]) |
||||
observables = sympy.Symbol('observables') |
||||
weight = sympy.Symbol('weight') |
||||
|
||||
# unknown, receiver velocity |
||||
v_x, v_y, v_z = sympy.Symbol('v_x'), sympy.Symbol('v_y'), sympy.Symbol('v_z') |
||||
vel = np.array([v_x, v_y, v_z]) |
||||
vel_o = sympy.Symbol('vel_o') |
||||
|
||||
loss = sat_pos - est_pos |
||||
loss /= sympy.sqrt(loss.dot(loss)) |
||||
|
||||
nv = loss.dot(sat_vel - vel) |
||||
ov = (observables - vel_o) |
||||
res = (nv - ov)*weight |
||||
|
||||
res = [res] + [sympy.diff(res, v) for v in [v_x, v_y, v_z, vel_o]] |
||||
|
||||
return sympy.lambdify([ |
||||
ep_x, ep_y, ep_z, sp_x, sp_y, sp_z, |
||||
sv_x, sv_y, sv_z, observables, weight, |
||||
v_x, v_y, v_z, vel_o |
||||
], |
||||
res, modules=["numpy"]) |
||||
|
||||
|
||||
def prr_residual(measurements, est_pos, no_weight=False, signal='D1C'): |
||||
loss_func = get_prr_sympy_func() |
||||
|
||||
def Fx_vel(vel, no_weight=no_weight): |
||||
vals, gradients = [], [] |
||||
|
||||
for meas in measurements: |
||||
if signal not in meas.observables or not np.isfinite(meas.observables[signal]): |
||||
continue |
||||
|
||||
sat_pos = meas.sat_pos_final if meas.corrected else meas.sat_pos |
||||
weight = 1 if no_weight or meas.observables_std[signal] == 0 else (1 / meas.observables_std[signal]) |
||||
|
||||
val, *gradient = loss_func(est_pos[0], est_pos[1], est_pos[2], |
||||
sat_pos[0], sat_pos[1], sat_pos[2], |
||||
meas.sat_vel[0], meas.sat_vel[1], meas.sat_vel[2], |
||||
meas.observables[signal], weight, |
||||
vel[0], vel[1], vel[2], vel[3]) |
||||
vals.append(val) |
||||
gradients.append(gradient) |
||||
|
||||
return np.asarray(vals), np.asarray(gradients) |
||||
|
||||
return Fx_vel |
||||
|
||||
|
||||
def gauss_newton(fun, b, xtol=1e-8, max_n=25): |
||||
for _ in range(max_n): |
||||
# Compute function and jacobian on current estimate |
||||
r, J = fun(b) |
||||
|
||||
# Update estimate |
||||
delta = np.linalg.pinv(J) @ r |
||||
b -= delta |
||||
|
||||
# Check step size for stopping condition |
||||
if np.linalg.norm(delta) < xtol: |
||||
break |
||||
return b |
||||
|
||||
|
||||
def get_posfix_sympy_fun(constellation): |
||||
# Unknowns |
||||
x, y, z = sympy.Symbol('x'), sympy.Symbol('y'), sympy.Symbol('z') |
||||
bc = sympy.Symbol('bc') |
||||
bg = sympy.Symbol('bg') |
||||
var = [x, y, z, bc, bg] |
||||
|
||||
# Knowns |
||||
pr = sympy.Symbol('pr') |
||||
sat_x, sat_y, sat_z = sympy.Symbol('sat_x'), sympy.Symbol('sat_y'), sympy.Symbol('sat_z') |
||||
weight = sympy.Symbol('weight') |
||||
|
||||
theta = EARTH_ROTATION_RATE * (pr - bc) / SPEED_OF_LIGHT |
||||
val = sympy.sqrt( |
||||
(sat_x * sympy.cos(theta) + sat_y * sympy.sin(theta) - x) ** 2 + |
||||
(sat_y * sympy.cos(theta) - sat_x * sympy.sin(theta) - y) ** 2 + |
||||
(sat_z - z) ** 2 |
||||
) |
||||
|
||||
if constellation == ConstellationId.GLONASS: |
||||
res = weight * (val - (pr - bc - bg)) |
||||
elif constellation == ConstellationId.GPS: |
||||
res = weight * (val - (pr - bc)) |
||||
else: |
||||
raise NotImplementedError(f"Constellation {constellation} not supported") |
||||
|
||||
res = [res] + [sympy.diff(res, v) for v in var] |
||||
|
||||
return sympy.lambdify([x, y, z, bc, bg, pr, sat_x, sat_y, sat_z, weight], res, modules=["numpy"]) |
||||
|
||||
|
||||
def calc_vel_fix(measurements, est_pos, min_measurements=6): |
||||
''' |
||||
Calculates gps velocity fix with WLS optimizer |
||||
returns: |
||||
0 -> list with velocities |
||||
1 -> pseudorange_rate errs |
||||
''' |
||||
if len(measurements) < min_measurements: |
||||
return [], [] |
||||
|
||||
Fx_vel = prr_residual(measurements, est_pos) |
||||
opt_vel = gauss_newton(Fx_vel, [0, 0, 0, 0]) |
||||
residual, _ = Fx_vel(opt_vel, no_weight=True) |
||||
return opt_vel.tolist(), residual.tolist() |
Loading…
Reference in new issue