diff --git a/selfdrive/modeld/fill_model_msg.py b/selfdrive/modeld/fill_model_msg.py index 47aa29d6bf..253d1aaa18 100644 --- a/selfdrive/modeld/fill_model_msg.py +++ b/selfdrive/modeld/fill_model_msg.py @@ -4,18 +4,23 @@ import numpy as np from typing import Dict from cereal import log from openpilot.selfdrive.modeld.constants import ( - DISENGAGE_WIDTH, FCW_THRESHOLDS_5MS2, FCW_THRESHOLDS_3MS2, IDX_N, LEAD_T_IDXS, LEAD_T_OFFSETS, - META_T_IDXS, MODEL_FREQ, RYG_GREEN, RYG_YELLOW, T_IDXS, X_IDXS, Plan, Meta + DISENGAGE_WIDTH, DESIRE_PRED_LEN, FCW_THRESHOLDS_5MS2, FCW_THRESHOLDS_3MS2, IDX_N, LEAD_T_IDXS, + LEAD_T_OFFSETS, META_T_IDXS, MODEL_FREQ, RYG_GREEN, RYG_YELLOW, T_IDXS, X_IDXS, Plan, Meta ) ConfidenceClass = log.ModelDataV2.ConfidenceClass class PublishState: def __init__(self): - self.disengage_buffer = np.zeros(DISENGAGE_WIDTH*DISENGAGE_WIDTH, dtype=np.float32) + self.disengage_buffer = np.zeros(DISENGAGE_WIDTH*(DESIRE_PRED_LEN+1), dtype=np.float32) self.prev_brake_5ms2_probs = np.zeros(DISENGAGE_WIDTH, dtype=np.float32) self.prev_brake_3ms2_probs = np.zeros(DISENGAGE_WIDTH, dtype=np.float32) + def enqueue(self, x, sample, length=None): + if length is None: length = len(sample) + x[:-length] = x[length:] + x[-length:] = sample + def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None): builder.t = t builder.x = x.tolist() @@ -122,10 +127,8 @@ def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist() disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist() - publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:] - publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0] - publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:] - publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0] + publish_state.enqueue(publish_state.prev_brake_5ms2_probs, net_output_data['meta'][0,Meta.HARD_BRAKE_5][0], length=1) + publish_state.enqueue(publish_state.prev_brake_3ms2_probs, net_output_data['meta'][0,Meta.HARD_BRAKE_3][0], length=1) hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > FCW_THRESHOLDS_5MS2).all() and (publish_state.prev_brake_3ms2_probs > FCW_THRESHOLDS_3MS2).all() meta.hardBrakePredicted = hard_brake_predicted.item() @@ -146,8 +149,7 @@ def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, # independent disengage prob for each 2s slice ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])] # rolling buf for 2, 4, 6, 8, 10s - publish_state.disengage_buffer[:-DISENGAGE_WIDTH] = publish_state.disengage_buffer[DISENGAGE_WIDTH:] - publish_state.disengage_buffer[DISENGAGE_WIDTH*(DISENGAGE_WIDTH-1):] = ind_disengage_probs + publish_state.enqueue(publish_state.disengage_buffer, ind_disengage_probs, length=DISENGAGE_WIDTH) score = publish_state.disengage_buffer[DISENGAGE_WIDTH-1:DISENGAGE_WIDTH*DISENGAGE_WIDTH-1:DISENGAGE_WIDTH-1].sum().item()/DISENGAGE_WIDTH modelV2.confidence = (scoreRYG_YELLOW)*ConfidenceClass.red