Change radar-based FCW to model-based FCW (#22379)
* just use MPC for fcw checking
* thats already bad
* model FCW is always good
* better fcw
* should be good for now
* comment
* linting
* cleaner
* unused
old-commit-hash: a8b4249ebc
commatwo_master
parent
74f3f4ab1a
commit
d91e0604e8
5 changed files with 13 additions and 99 deletions
@ -1,76 +0,0 @@ |
|||||||
import math |
|
||||||
from collections import defaultdict |
|
||||||
|
|
||||||
from common.numpy_fast import interp |
|
||||||
|
|
||||||
_FCW_A_ACT_V = [-3., -2.] |
|
||||||
_FCW_A_ACT_BP = [0., 30.] |
|
||||||
|
|
||||||
|
|
||||||
class FCWChecker(): |
|
||||||
def __init__(self): |
|
||||||
self.reset_lead(0.0) |
|
||||||
self.common_counters = defaultdict(lambda: 0) |
|
||||||
|
|
||||||
def reset_lead(self, cur_time): |
|
||||||
self.last_fcw_a = 0.0 |
|
||||||
self.v_lead_max = 0.0 |
|
||||||
self.lead_seen_t = cur_time |
|
||||||
self.last_fcw_time = 0.0 |
|
||||||
self.last_min_a = 0.0 |
|
||||||
|
|
||||||
self.counters = defaultdict(lambda: 0) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead): |
|
||||||
max_ttc = 5.0 |
|
||||||
|
|
||||||
v_rel = v_ego - v_lead |
|
||||||
a_rel = a_ego - a_lead |
|
||||||
|
|
||||||
# assuming that closing gap ARel comes from lead vehicle decel, |
|
||||||
# then limit ARel so that v_lead will get to zero in no sooner than t_decel. |
|
||||||
# This helps underweighting ARel when v_lead is close to zero. |
|
||||||
t_decel = 2. |
|
||||||
a_rel = min(a_rel, v_lead / t_decel) |
|
||||||
|
|
||||||
# delta of the quadratic equation to solve for ttc |
|
||||||
delta = v_rel**2 + 2 * x_lead * a_rel |
|
||||||
|
|
||||||
# assign an arbitrary high ttc value if there is no solution to ttc |
|
||||||
if delta < 0.1 or (math.sqrt(delta) + v_rel < 0.1): |
|
||||||
ttc = max_ttc |
|
||||||
else: |
|
||||||
ttc = min(2 * x_lead / (math.sqrt(delta) + v_rel), max_ttc) |
|
||||||
return ttc |
|
||||||
|
|
||||||
def update(self, mpc_solution_a, cur_time, active, v_ego, a_ego, x_lead, v_lead, a_lead, y_lead, vlat_lead, fcw_lead, blinkers): |
|
||||||
|
|
||||||
self.last_min_a = min(mpc_solution_a) |
|
||||||
self.v_lead_max = max(self.v_lead_max, v_lead) |
|
||||||
|
|
||||||
self.common_counters['blinkers'] = self.common_counters['blinkers'] + 10.0 / (20 * 3.0) if not blinkers else 0 |
|
||||||
self.common_counters['v_ego'] = self.common_counters['v_ego'] + 1 if v_ego > 5.0 else 0 |
|
||||||
|
|
||||||
if (fcw_lead > 0.99): |
|
||||||
ttc = self.calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead) |
|
||||||
self.counters['ttc'] = self.counters['ttc'] + 1 if ttc < 2.5 else 0 |
|
||||||
self.counters['v_lead_max'] = self.counters['v_lead_max'] + 1 if self.v_lead_max > 2.5 else 0 |
|
||||||
self.counters['v_ego_lead'] = self.counters['v_ego_lead'] + 1 if v_ego > v_lead else 0 |
|
||||||
self.counters['lead_seen'] = self.counters['lead_seen'] + 0.33 |
|
||||||
self.counters['y_lead'] = self.counters['y_lead'] + 1 if abs(y_lead) < 1.0 else 0 |
|
||||||
self.counters['vlat_lead'] = self.counters['vlat_lead'] + 1 if abs(vlat_lead) < 0.4 else 0 |
|
||||||
|
|
||||||
a_thr = interp(v_lead, _FCW_A_ACT_BP, _FCW_A_ACT_V) |
|
||||||
a_delta = min(mpc_solution_a[:15]) - min(0.0, a_ego) |
|
||||||
|
|
||||||
future_fcw_allowed = all(c >= 10 for c in self.counters.values()) |
|
||||||
future_fcw_allowed = future_fcw_allowed and all(c >= 10 for c in self.common_counters.values()) |
|
||||||
future_fcw = (self.last_min_a < -3.0 or a_delta < a_thr) and future_fcw_allowed |
|
||||||
|
|
||||||
if future_fcw and (self.last_fcw_time + 5.0 < cur_time): |
|
||||||
self.last_fcw_time = cur_time |
|
||||||
self.last_fcw_a = self.last_min_a |
|
||||||
return True |
|
||||||
|
|
||||||
return False |
|
Loading…
Reference in new issue