diff --git a/selfdrive/controls/lib/longitudinal_planner.py b/selfdrive/controls/lib/longitudinal_planner.py index 8cbf0beee9..e52cbed239 100755 --- a/selfdrive/controls/lib/longitudinal_planner.py +++ b/selfdrive/controls/lib/longitudinal_planner.py @@ -96,7 +96,7 @@ class LongitudinalPlanner: else: accel_coast = ACCEL_MAX - v_ego = sm['carState'].vEgo + v_ego = sm['modelV2'].velocity.x[0] v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS v_cruise_initialized = sm['carState'].vCruise != V_CRUISE_UNSET @@ -128,7 +128,7 @@ class LongitudinalPlanner: self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego)) # Compute model v_ego error self.v_model_error = get_speed_error(sm['modelV2'], v_ego) - x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'], self.v_model_error) + x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'], 0) # Don't clip at low speeds since throttle_prob doesn't account for creep self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED diff --git a/selfdrive/modeld/fill_model_msg.py b/selfdrive/modeld/fill_model_msg.py index a91c6395c7..64cb6940dc 100644 --- a/selfdrive/modeld/fill_model_msg.py +++ b/selfdrive/modeld/fill_model_msg.py @@ -91,10 +91,10 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D # temporal pose temporal_pose = modelV2.temporalPose - temporal_pose.trans = net_output_data['sim_pose'][0,:ModelConstants.POSE_WIDTH//2].tolist() - temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:ModelConstants.POSE_WIDTH//2].tolist() - temporal_pose.rot = net_output_data['sim_pose'][0,ModelConstants.POSE_WIDTH//2:].tolist() - temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,ModelConstants.POSE_WIDTH//2:].tolist() + #temporal_pose.trans = net_output_data['sim_pose'][0,:ModelConstants.POSE_WIDTH//2].tolist() + #temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:ModelConstants.POSE_WIDTH//2].tolist() + #temporal_pose.rot = net_output_data['sim_pose'][0,ModelConstants.POSE_WIDTH//2:].tolist() + #temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,ModelConstants.POSE_WIDTH//2:].tolist() # poly path fill_xyz_poly(driving_model_data.path, ModelConstants.POLY_PATH_DEGREE, *net_output_data['plan'][0,:,Plan.POSITION].T) diff --git a/selfdrive/modeld/parse_model_outputs.py b/selfdrive/modeld/parse_model_outputs.py index 810c44ccb9..783572d436 100644 --- a/selfdrive/modeld/parse_model_outputs.py +++ b/selfdrive/modeld/parse_model_outputs.py @@ -88,6 +88,12 @@ class Parser: self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,)) self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) + self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) + self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) + self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION, + out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH)) + for k in ['lead_prob', 'lane_lines_prob']: + self.parse_binary_crossentropy(k, outs) self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH)) self.parse_binary_crossentropy('meta', outs) return outs @@ -95,17 +101,10 @@ class Parser: def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]: self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION, out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH)) - self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) - self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH)) - self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,)) - self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION, - out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH)) if 'lat_planner_solution' in outs: self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH)) if 'desired_curvature' in outs: self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,)) - for k in ['lead_prob', 'lane_lines_prob']: - self.parse_binary_crossentropy(k, outs) self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,)) return outs