torqued: Refactor to share code with magd (#30238)

* refactor to extract common functions and classes out

* Add helpers.py to release files

* refactor
old-commit-hash: 9e24a11f17
testing-closet
Vivek Aithal 2 years ago committed by GitHub
parent e785de4166
commit db2344cdd2
  1. 1
      release/files_common
  2. 50
      selfdrive/locationd/helpers.py
  3. 51
      selfdrive/locationd/torqued.py

@ -246,6 +246,7 @@ selfdrive/locationd/models/gnss_helpers.py
selfdrive/locationd/torqued.py
selfdrive/locationd/calibrationd.py
selfdrive/locationd/helpers.py
system/logcatd/.gitignore
system/logcatd/SConscript

@ -0,0 +1,50 @@
import numpy as np
from typing import List, Optional, Tuple, Any
class NPQueue:
def __init__(self, maxlen: int, rowsize: int) -> None:
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self) -> int:
return len(self.arr)
def append(self, pt: List[float]) -> None:
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds: List[Tuple[float, float]], min_points: List[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None:
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def bucket_lengths(self) -> List[int]:
return [len(v) for v in self.buckets.values()]
def __len__(self) -> int:
return sum(self.bucket_lengths())
def is_valid(self) -> bool:
individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True))
total_points_valid = self.__len__() >= self.min_points_total
return individual_buckets_valid and total_points_valid
def add_point(self, x: float, y: float, bucket_val: float) -> None:
raise NotImplementedError
def get_points(self, num_points: Optional[int] = None) -> Any:
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points: List[List[float]]) -> None:
for point in points:
self.add_point(*point)

@ -12,6 +12,7 @@ from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.system.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot.selfdrive.locationd.helpers import PointBuckets
HISTORY = 5 # secs
POINTS_PER_BUCKET = 1500
@ -43,55 +44,13 @@ def slope2rot(slope):
return np.array([[cos, -sin], [sin, cos]])
class NPQueue:
def __init__(self, maxlen, rowsize):
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self):
return len(self.arr)
def append(self, pt):
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds, min_points, min_points_total):
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=POINTS_PER_BUCKET, rowsize=3) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def bucket_lengths(self):
return [len(v) for v in self.buckets.values()]
def __len__(self):
return sum(self.bucket_lengths())
def is_valid(self):
return all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True)) \
and (self.__len__() >= self.min_points_total)
class TorqueBuckets(PointBuckets):
def add_point(self, x, y):
for bound_min, bound_max in self.x_bounds:
if (x >= bound_min) and (x < bound_max):
self.buckets[(bound_min, bound_max)].append([x, 1.0, y])
break
def get_points(self, num_points=None):
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points):
for x, y in points:
self.add_point(x, y)
class TorqueEstimator:
def __init__(self, CP, decimated=False):
@ -175,7 +134,11 @@ class TorqueEstimator:
self.resets += 1.0
self.decay = MIN_FILTER_DECAY
self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len))
self.filtered_points = PointBuckets(x_bounds=STEER_BUCKET_BOUNDS, min_points=self.min_bucket_points, min_points_total=self.min_points_total)
self.filtered_points = TorqueBuckets(x_bounds=STEER_BUCKET_BOUNDS,
min_points=self.min_bucket_points,
min_points_total=self.min_points_total,
points_per_bucket=POINTS_PER_BUCKET,
rowsize=3)
def estimate_params(self):
points = self.filtered_points.get_points(self.fit_points)

Loading…
Cancel
Save