vehicle model types (#1631)

old-commit-hash: 2400417084
commatwo_master
Willem Melching 5 years ago committed by GitHub
parent d035394ce7
commit dbdbef72d6
  1. 1
      .pre-commit-config.yaml
  2. 166
      selfdrive/controls/lib/vehicle_model.py
  3. 3
      selfdrive/debug/internal/test_paramsd.py

@ -15,6 +15,7 @@ repos:
hooks:
- id: mypy
exclude: '^(pyextra)|(external)|(cereal)|(rednose)|(panda)|(laika)|(opendbc)|(laika_repo)|(rednose_repo)/'
additional_dependencies: ['git+https://github.com/numpy/numpy-stubs']
- repo: https://github.com/PyCQA/flake8
rev: master
hooks:

@ -14,83 +14,12 @@ A depends on longitudinal speed, u [m/s], and vehicle parameters CP
"""
import numpy as np
from numpy.linalg import solve
from typing import Tuple
from cereal import car
def create_dyn_state_matrices(u, VM):
"""Returns the A and B matrix for the dynamics system
Args:
u: Vehicle speed [m/s]
VM: Vehicle model
Returns:
A tuple with the 2x2 A matrix, and 2x1 B matrix
Parameters in the vehicle model:
cF: Tire stiffnes Front [N/rad]
cR: Tire stiffnes Front [N/rad]
aF: Distance from CG to front wheels [m]
aR: Distance from CG to rear wheels [m]
m: Mass [kg]
j: Rotational inertia [kg m^2]
sR: Steering ratio [-]
chi: Steer ratio rear [-]
"""
A = np.zeros((2, 2))
B = np.zeros((2, 1))
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
return A, B
def kin_ss_sol(sa, u, VM):
"""Calculate the steady state solution at low speeds
At low speeds the tire slip is undefined, so a kinematic
model is used.
Args:
sa: Steering angle [rad]
u: Speed [m/s]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
K = np.zeros((2, 1))
K[0, 0] = VM.aR / VM.sR / VM.l * u
K[1, 0] = 1. / VM.sR / VM.l * u
return K * sa
def dyn_ss_sol(sa, u, VM):
"""Calculate the steady state solution when x_dot = 0,
Ax + Bu = 0 => x = A^{-1} B u
Args:
sa: Steering angle [rad]
u: Speed [m/s]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
A, B = create_dyn_state_matrices(u, VM)
return -solve(A, B) * sa
def calc_slip_factor(VM):
"""The slip factor is a measure of how the curvature changes with speed
it's positive for Oversteering vehicle, negative (usual case) otherwise.
"""
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
class VehicleModel():
def __init__(self, CP):
class VehicleModel:
def __init__(self, CP: car.CarParams):
"""
Args:
CP: Car Parameters
@ -107,13 +36,13 @@ class VehicleModel():
self.cR_orig = CP.tireStiffnessRear
self.update_params(1.0, CP.steerRatio)
def update_params(self, stiffness_factor, steer_ratio):
def update_params(self, stiffness_factor: float, steer_ratio: float) -> None:
"""Update the vehicle model with a new stiffness factor and steer ratio"""
self.cF = stiffness_factor * self.cF_orig
self.cR = stiffness_factor * self.cR_orig
self.sR = steer_ratio
def steady_state_sol(self, sa, u):
def steady_state_sol(self, sa: float, u: float) -> np.ndarray:
"""Returns the steady state solution.
If the speed is too small we can't use the dynamic model (tire slip is undefined),
@ -131,7 +60,7 @@ class VehicleModel():
else:
return kin_ss_sol(sa, u, self)
def calc_curvature(self, sa, u):
def calc_curvature(self, sa: float, u: float) -> float:
"""Returns the curvature. Multiplied by the speed this will give the yaw rate.
Args:
@ -143,7 +72,7 @@ class VehicleModel():
"""
return self.curvature_factor(u) * sa / self.sR
def curvature_factor(self, u):
def curvature_factor(self, u: float) -> float:
"""Returns the curvature factor.
Multiplied by wheel angle (not steering wheel angle) this will give the curvature.
@ -156,7 +85,7 @@ class VehicleModel():
sf = calc_slip_factor(self)
return (1. - self.chi) / (1. - sf * u**2) / self.l
def get_steer_from_curvature(self, curv, u):
def get_steer_from_curvature(self, curv: float, u: float) -> float:
"""Calculates the required steering wheel angle for a given curvature
Args:
@ -169,7 +98,7 @@ class VehicleModel():
return curv * self.sR * 1.0 / self.curvature_factor(u)
def get_steer_from_yaw_rate(self, yaw_rate, u):
def get_steer_from_yaw_rate(self, yaw_rate: float, u: float) -> float:
"""Calculates the required steering wheel angle for a given yaw_rate
Args:
@ -182,7 +111,7 @@ class VehicleModel():
curv = yaw_rate / u
return self.get_steer_from_curvature(curv, u)
def yaw_rate(self, sa, u):
def yaw_rate(self, sa: float, u: float) -> float:
"""Calculate yaw rate
Args:
@ -193,3 +122,76 @@ class VehicleModel():
Yaw rate [rad/s]
"""
return self.calc_curvature(sa, u) * u
def kin_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
"""Calculate the steady state solution at low speeds
At low speeds the tire slip is undefined, so a kinematic
model is used.
Args:
sa: Steering angle [rad]
u: Speed [m/s]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
K = np.zeros((2, 1))
K[0, 0] = VM.aR / VM.sR / VM.l * u
K[1, 0] = 1. / VM.sR / VM.l * u
return K * sa
def create_dyn_state_matrices(u: float, VM: VehicleModel) -> Tuple[np.ndarray, np.ndarray]:
"""Returns the A and B matrix for the dynamics system
Args:
u: Vehicle speed [m/s]
VM: Vehicle model
Returns:
A tuple with the 2x2 A matrix, and 2x1 B matrix
Parameters in the vehicle model:
cF: Tire stiffnes Front [N/rad]
cR: Tire stiffnes Front [N/rad]
aF: Distance from CG to front wheels [m]
aR: Distance from CG to rear wheels [m]
m: Mass [kg]
j: Rotational inertia [kg m^2]
sR: Steering ratio [-]
chi: Steer ratio rear [-]
"""
A = np.zeros((2, 2))
B = np.zeros((2, 1))
A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
return A, B
def dyn_ss_sol(sa: float, u: float, VM: VehicleModel) -> np.ndarray:
"""Calculate the steady state solution when x_dot = 0,
Ax + Bu = 0 => x = A^{-1} B u
Args:
sa: Steering angle [rad]
u: Speed [m/s]
VM: Vehicle model
Returns:
2x1 matrix with steady state solution
"""
A, B = create_dyn_state_matrices(u, VM)
return -solve(A, B) * sa
def calc_slip_factor(VM):
"""The slip factor is a measure of how the curvature changes with speed
it's positive for Oversteering vehicle, negative (usual case) otherwise.
"""
return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)

@ -4,6 +4,7 @@
import numpy as np
import math
from tqdm import tqdm
from typing import cast
import seaborn as sns
import matplotlib.pyplot as plt
@ -34,7 +35,7 @@ speeds = 10 * np.sin(2 * np.pi * ts / 200.) + 25
angle_offsets = math.radians(1.0) * np.ones_like(ts)
angle_offsets[ts > 60] = 0
steering_angles = np.radians(5 * np.cos(2 * np.pi * ts / 100.))
steering_angles = cast(np.ndarray, np.radians(5 * np.cos(2 * np.pi * ts / 100.)))
xs = []
ys = []

Loading…
Cancel
Save