laikad: fixes to run on device (#24879)
* Always run laikad on device! * Update laika * Update laika * Fix gps week and time of week in msg * Reset kalman filter if pos_fix or last_known_position * put behind file * move pr parsing into common file Co-authored-by: Willem Melching <willem.melching@gmail.com>pull/24880/head
parent
2699bae778
commit
dc98511b7a
8 changed files with 135 additions and 117 deletions
@ -1 +1 @@ |
||||
Subproject commit 951ab080b998ee3edde6229654d1a4cb63cda6a9 |
||||
Subproject commit 44f048bc1f58ae9e28dfdeb98e40aea3e0f2b699 |
@ -0,0 +1,89 @@ |
||||
import numpy as np |
||||
import sympy |
||||
|
||||
from laika.constants import EARTH_ROTATION_RATE, SPEED_OF_LIGHT |
||||
from laika.helpers import ConstellationId |
||||
|
||||
|
||||
def calc_pos_fix_gauss_newton(measurements, posfix_functions, x0=None, signal='C1C', min_measurements=6): |
||||
''' |
||||
Calculates gps fix using gauss newton method |
||||
To solve the problem a minimal of 4 measurements are required. |
||||
If Glonass is included 5 are required to solve for the additional free variable. |
||||
returns: |
||||
0 -> list with positions |
||||
''' |
||||
if x0 is None: |
||||
x0 = [0, 0, 0, 0, 0] |
||||
n = len(measurements) |
||||
if n < min_measurements: |
||||
return [], [] |
||||
|
||||
Fx_pos = pr_residual(measurements, posfix_functions, signal=signal) |
||||
x = gauss_newton(Fx_pos, x0) |
||||
residual, _ = Fx_pos(x, weight=1.0) |
||||
return x.tolist(), residual.tolist() |
||||
|
||||
|
||||
def pr_residual(measurements, posfix_functions, signal='C1C'): |
||||
def Fx_pos(inp, weight=None): |
||||
vals, gradients = [], [] |
||||
|
||||
for meas in measurements: |
||||
pr = meas.observables[signal] |
||||
pr += meas.sat_clock_err * SPEED_OF_LIGHT |
||||
|
||||
w = (1 / meas.observables_std[signal]) if weight is None else weight |
||||
|
||||
val, *gradient = posfix_functions[meas.constellation_id](*inp, pr, *meas.sat_pos, w) |
||||
vals.append(val) |
||||
gradients.append(gradient) |
||||
return np.asarray(vals), np.asarray(gradients) |
||||
|
||||
return Fx_pos |
||||
|
||||
|
||||
def gauss_newton(fun, b, xtol=1e-8, max_n=25): |
||||
for _ in range(max_n): |
||||
# Compute function and jacobian on current estimate |
||||
r, J = fun(b) |
||||
|
||||
# Update estimate |
||||
delta = np.linalg.pinv(J) @ r |
||||
b -= delta |
||||
|
||||
# Check step size for stopping condition |
||||
if np.linalg.norm(delta) < xtol: |
||||
break |
||||
return b |
||||
|
||||
|
||||
def get_posfix_sympy_fun(constellation): |
||||
# Unknowns |
||||
x, y, z = sympy.Symbol('x'), sympy.Symbol('y'), sympy.Symbol('z') |
||||
bc = sympy.Symbol('bc') |
||||
bg = sympy.Symbol('bg') |
||||
var = [x, y, z, bc, bg] |
||||
|
||||
# Knowns |
||||
pr = sympy.Symbol('pr') |
||||
sat_x, sat_y, sat_z = sympy.Symbol('sat_x'), sympy.Symbol('sat_y'), sympy.Symbol('sat_z') |
||||
weight = sympy.Symbol('weight') |
||||
|
||||
theta = EARTH_ROTATION_RATE * (pr - bc) / SPEED_OF_LIGHT |
||||
val = sympy.sqrt( |
||||
(sat_x * sympy.cos(theta) + sat_y * sympy.sin(theta) - x) ** 2 + |
||||
(sat_y * sympy.cos(theta) - sat_x * sympy.sin(theta) - y) ** 2 + |
||||
(sat_z - z) ** 2 |
||||
) |
||||
|
||||
if constellation == ConstellationId.GLONASS: |
||||
res = weight * (val - (pr - bc - bg)) |
||||
elif constellation == ConstellationId.GPS: |
||||
res = weight * (val - (pr - bc)) |
||||
else: |
||||
raise NotImplementedError(f"Constellation {constellation} not supported") |
||||
|
||||
res = [res] + [sympy.diff(res, v) for v in var] |
||||
|
||||
return sympy.lambdify([x, y, z, bc, bg, pr, sat_x, sat_y, sat_z, weight], res) |
@ -0,0 +1,21 @@ |
||||
import numpy as np |
||||
|
||||
def parse_prr(m): |
||||
from laika.raw_gnss import GNSSMeasurement |
||||
sat_pos_vel_i = np.concatenate((m[GNSSMeasurement.SAT_POS], |
||||
m[GNSSMeasurement.SAT_VEL])) |
||||
R_i = np.atleast_2d(m[GNSSMeasurement.PRR_STD]**2) |
||||
z_i = m[GNSSMeasurement.PRR] |
||||
return z_i, R_i, sat_pos_vel_i |
||||
|
||||
|
||||
def parse_pr(m): |
||||
from laika.raw_gnss import GNSSMeasurement |
||||
pseudorange = m[GNSSMeasurement.PR] |
||||
pseudorange_stdev = m[GNSSMeasurement.PR_STD] |
||||
sat_pos_freq_i = np.concatenate((m[GNSSMeasurement.SAT_POS], |
||||
np.array([m[GNSSMeasurement.GLONASS_FREQ]]))) |
||||
z_i = np.atleast_1d(pseudorange) |
||||
R_i = np.atleast_2d(pseudorange_stdev**2) |
||||
return z_i, R_i, sat_pos_freq_i |
||||
|
Loading…
Reference in new issue