Merge remote-tracking branch 'origin/master' into online-lag

online-lag
Kacper Rączy 3 months ago
commit ddda63e8b4
  1. 2
      .github/workflows/selfdrive_tests.yaml
  2. 8
      common/realtime.py
  3. 2
      opendbc_repo
  4. 2
      panda
  5. 3
      selfdrive/car/card.py
  6. 19
      selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
  7. 39
      selfdrive/controls/lib/longitudinal_planner.py
  8. 3
      selfdrive/debug/clear_dtc.py
  9. 3
      selfdrive/debug/hyundai_enable_radar_points.py
  10. 3
      selfdrive/debug/read_dtc_status.py
  11. 3
      selfdrive/debug/vw_mqb_config.py
  12. 6
      selfdrive/locationd/calibrationd.py
  13. 6
      selfdrive/modeld/dmonitoringmodeld.py
  14. 7
      selfdrive/monitoring/dmonitoringd.py
  15. 2
      selfdrive/selfdrived/selfdrived.py
  16. 2
      selfdrive/test/longitudinal_maneuvers/maneuver.py
  17. 10
      selfdrive/test/longitudinal_maneuvers/plant.py
  18. 7
      selfdrive/test/longitudinal_maneuvers/test_longitudinal.py
  19. 16
      selfdrive/test/process_replay/migration.py
  20. 2
      selfdrive/test/process_replay/process_replay.py
  21. 2
      selfdrive/test/process_replay/ref_commit
  22. 49
      selfdrive/test/test_onroad.py
  23. 4
      system/camerad/cameras/camera_qcom2.cc
  24. 2
      system/hardware/tici/tests/test_power_draw.py
  25. 17
      tools/sim/lib/simulated_car.py

@ -315,7 +315,7 @@ jobs:
run: |
${{ env.RUN }} "source selfdrive/test/setup_xvfb.sh && \
source selfdrive/test/setup_vsound.sh && \
CI=1 pytest tools/sim/tests/test_metadrive_bridge.py"
CI=1 pytest -s tools/sim/tests/test_metadrive_bridge.py"
create_ui_report:
# This job name needs to be the same as UI_JOB_NAME in ui_preview.yaml

@ -27,11 +27,6 @@ class Priority:
CTRL_HIGH = 53
def set_realtime_priority(level: int) -> None:
if not PC:
os.sched_setscheduler(0, os.SCHED_FIFO, os.sched_param(level))
def set_core_affinity(cores: list[int]) -> None:
if not PC:
os.sched_setaffinity(0, cores)
@ -39,7 +34,8 @@ def set_core_affinity(cores: list[int]) -> None:
def config_realtime_process(cores: int | list[int], priority: int) -> None:
gc.disable()
set_realtime_priority(priority)
if not PC:
os.sched_setscheduler(0, os.SCHED_FIFO, os.sched_param(priority))
c = cores if isinstance(cores, list) else [cores, ]
set_core_affinity(c)

@ -1 +1 @@
Subproject commit 4bfb262fd52bc6946de1c8280efc424910bd9d60
Subproject commit 130bf3183f4ab871ee8dd56b122cfbb038542606

@ -1 +1 @@
Subproject commit 3ff97305c565d5e43931052b9ec4747b2f617401
Subproject commit 978ee190051806f8e5b7b8fede6b6be4e4db4aae

@ -7,8 +7,6 @@ import cereal.messaging as messaging
from cereal import car, log
from panda import ALTERNATIVE_EXPERIENCE
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, Priority, Ratekeeper
from openpilot.common.swaglog import cloudlog, ForwardingHandler
@ -19,6 +17,7 @@ from opendbc.car.carlog import carlog
from opendbc.car.fw_versions import ObdCallback
from opendbc.car.car_helpers import get_car, get_radar_interface
from opendbc.car.interfaces import CarInterfaceBase, RadarInterfaceBase
from opendbc.safety import ALTERNATIVE_EXPERIENCE
from openpilot.selfdrive.pandad import can_capnp_to_list, can_list_to_can_capnp
from openpilot.selfdrive.car.cruise import VCruiseHelper
from openpilot.selfdrive.car.car_specific import MockCarState

@ -3,7 +3,7 @@ import os
import time
import numpy as np
from cereal import log
from opendbc.car.interfaces import ACCEL_MIN
from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
# WARNING: imports outside of constants will not trigger a rebuild
@ -55,6 +55,8 @@ FCW_IDXS = T_IDXS < 5.0
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
COMFORT_BRAKE = 2.5
STOP_DISTANCE = 6.0
CRUISE_MIN_ACCEL = -1.2
CRUISE_MAX_ACCEL = 1.6
def get_jerk_factor(personality=log.LongitudinalPersonality.standard):
if personality==log.LongitudinalPersonality.relaxed:
@ -281,7 +283,7 @@ class LongitudinalMpc:
elif self.mode == 'blended':
a_change_cost = 40.0 if prev_accel_constraint else 0
cost_weights = [0., 0.1, 0.2, 5.0, a_change_cost, 1.0]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, 50.0]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]
else:
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner cost set')
self.set_cost_weights(cost_weights, constraint_cost_weights)
@ -325,12 +327,6 @@ class LongitudinalMpc:
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
return lead_xv
def set_accel_limits(self, min_a, max_a):
# TODO this sets a max accel limit, but the minimum limit is only for cruise decel
# needs refactor
self.cruise_min_a = min_a
self.max_a = max_a
def update(self, radarstate, v_cruise, x, v, a, j, personality=log.LongitudinalPersonality.standard):
t_follow = get_T_FOLLOW(personality)
v_ego = self.x0[1]
@ -346,8 +342,7 @@ class LongitudinalMpc:
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
self.params[:,0] = ACCEL_MIN
# negative accel constraint causes problems because negative speed is not allowed
self.params[:,1] = max(0.0, self.max_a)
self.params[:,1] = ACCEL_MAX
# Update in ACC mode or ACC/e2e blend
if self.mode == 'acc':
@ -355,9 +350,9 @@ class LongitudinalMpc:
# Fake an obstacle for cruise, this ensures smooth acceleration to set speed
# when the leads are no factor.
v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
v_lower = v_ego + (T_IDXS * CRUISE_MIN_ACCEL * 1.05)
# TODO does this make sense when max_a is negative?
v_upper = v_ego + (T_IDXS * self.max_a * 1.05)
v_upper = v_ego + (T_IDXS * CRUISE_MAX_ACCEL * 1.05)
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),
v_lower,
v_upper)

@ -16,7 +16,6 @@ from openpilot.selfdrive.car.cruise import V_CRUISE_MAX, V_CRUISE_UNSET
from openpilot.common.swaglog import cloudlog
LON_MPC_STEP = 0.2 # first step is 0.2s
A_CRUISE_MIN = -1.2
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
@ -76,7 +75,10 @@ class LongitudinalPlanner:
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
self.prev_accel_clip = [ACCEL_MIN, ACCEL_MAX]
self.v_model_error = 0.0
self.output_a_target = 0.0
self.output_should_stop = False
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
@ -128,17 +130,16 @@ class LongitudinalPlanner:
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if self.mpc.mode == 'acc':
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_clip = [ACCEL_MIN, get_max_accel(v_ego)]
steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg
accel_limits_turns = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_limits, self.CP)
accel_clip = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_clip, self.CP)
else:
accel_limits = [ACCEL_MIN, ACCEL_MAX]
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
accel_clip = [ACCEL_MIN, ACCEL_MAX]
if reset_state:
self.v_desired_filter.x = v_ego
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
self.a_desired = np.clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
self.a_desired = np.clip(sm['carState'].aEgo, accel_clip[0], accel_clip[1])
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
@ -149,18 +150,14 @@ class LongitudinalPlanner:
self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED
if not self.allow_throttle:
clipped_accel_coast = max(accel_coast, accel_limits_turns[0])
clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast])
accel_limits_turns[1] = min(accel_limits_turns[1], clipped_accel_coast_interp)
clipped_accel_coast = max(accel_coast, accel_clip[0])
clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_clip[1], clipped_accel_coast])
accel_clip[1] = min(accel_clip[1], clipped_accel_coast_interp)
if force_slow_decel:
v_cruise = 0.0
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality)
@ -178,6 +175,15 @@ class LongitudinalPlanner:
self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
action_t = self.CP.longitudinalActuatorDelay + DT_MDL
output_a_target, self.output_should_stop = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory,
action_t=action_t, vEgoStopping=self.CP.vEgoStopping)
for idx in range(2):
accel_clip[idx] = np.clip(accel_clip[idx], self.prev_accel_clip[idx] - 0.05, self.prev_accel_clip[idx] + 0.05)
self.output_a_target = np.clip(output_a_target, accel_clip[0], accel_clip[1])
self.prev_accel_clip = accel_clip
def publish(self, sm, pm):
plan_send = messaging.new_message('longitudinalPlan')
@ -196,11 +202,8 @@ class LongitudinalPlanner:
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
action_t = self.CP.longitudinalActuatorDelay + DT_MDL
a_target, should_stop = get_accel_from_plan(longitudinalPlan.speeds, longitudinalPlan.accels,
action_t=action_t, vEgoStopping=self.CP.vEgoStopping)
longitudinalPlan.aTarget = float(a_target)
longitudinalPlan.shouldStop = bool(should_stop)
longitudinalPlan.aTarget = float(self.output_a_target)
longitudinalPlan.shouldStop = bool(self.output_should_stop)
longitudinalPlan.allowBrake = True
longitudinalPlan.allowThrottle = bool(self.allow_throttle)

@ -4,6 +4,7 @@ import argparse
from subprocess import check_output, CalledProcessError
from opendbc.car.carlog import carlog
from opendbc.car.uds import UdsClient, MessageTimeoutError, SESSION_TYPE, DTC_GROUP_TYPE
from opendbc.safety import Safety
from panda import Panda
parser = argparse.ArgumentParser(description="clear DTC status")
@ -24,7 +25,7 @@ except CalledProcessError as e:
raise e
panda = Panda()
panda.set_safety_mode(Panda.SAFETY_ELM327)
panda.set_safety_mode(Safety.SAFETY_ELM327)
uds_client = UdsClient(panda, args.addr, bus=args.bus)
print("extended diagnostic session ...")
try:

@ -18,6 +18,7 @@ from subprocess import check_output, CalledProcessError
from opendbc.car.carlog import carlog
from opendbc.car.uds import UdsClient, SESSION_TYPE, DATA_IDENTIFIER_TYPE
from opendbc.safety import Safety
from panda.python import Panda
class ConfigValues(NamedTuple):
@ -96,7 +97,7 @@ if __name__ == "__main__":
sys.exit(0)
panda = Panda()
panda.set_safety_mode(Panda.SAFETY_ELM327)
panda.set_safety_mode(Safety.SAFETY_ELM327)
uds_client = UdsClient(panda, 0x7D0, bus=args.bus)
print("\n[START DIAGNOSTIC SESSION]")

@ -4,6 +4,7 @@ import argparse
from subprocess import check_output, CalledProcessError
from opendbc.car.carlog import carlog
from opendbc.car.uds import UdsClient, SESSION_TYPE, DTC_REPORT_TYPE, DTC_STATUS_MASK_TYPE, get_dtc_num_as_str, get_dtc_status_names
from opendbc.safety import Safety
from panda import Panda
parser = argparse.ArgumentParser(description="read DTC status")
@ -24,7 +25,7 @@ except CalledProcessError as e:
raise e
panda = Panda()
panda.set_safety_mode(Panda.SAFETY_ELM327)
panda.set_safety_mode(Safety.SAFETY_ELM327)
uds_client = UdsClient(panda, args.addr, bus=args.bus)
print("extended diagnostic session ...")
uds_client.diagnostic_session_control(SESSION_TYPE.EXTENDED_DIAGNOSTIC)

@ -6,6 +6,7 @@ from enum import IntEnum
from opendbc.car.carlog import carlog
from opendbc.car.uds import UdsClient, MessageTimeoutError, NegativeResponseError, SESSION_TYPE,\
DATA_IDENTIFIER_TYPE, ACCESS_TYPE
from opendbc.safety import Safety
from panda import Panda
from datetime import date
@ -38,7 +39,7 @@ if __name__ == "__main__":
carlog.setLevel('DEBUG')
panda = Panda()
panda.set_safety_mode(Panda.SAFETY_ELM327)
panda.set_safety_mode(Safety.SAFETY_ELM327)
bus = 1 if panda.has_obd() else 0
uds_client = UdsClient(panda, MQB_EPS_CAN_ADDR, MQB_EPS_CAN_ADDR + RX_OFFSET, bus, timeout=0.2)

@ -6,7 +6,6 @@ While the roll calibration is a real value that can be estimated, here we assume
and the image input into the neural network is not corrected for roll.
'''
import gc
import os
import capnp
import numpy as np
@ -16,7 +15,7 @@ from cereal import log
import cereal.messaging as messaging
from openpilot.common.conversions import Conversions as CV
from openpilot.common.params import Params
from openpilot.common.realtime import set_realtime_priority
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
from openpilot.common.swaglog import cloudlog
@ -256,8 +255,7 @@ class Calibrator:
def main() -> NoReturn:
gc.disable()
set_realtime_priority(1)
config_realtime_process([0, 1, 2, 3], 5)
pm = messaging.PubMaster(['liveCalibration'])
sm = messaging.SubMaster(['cameraOdometry', 'carState', 'carParams'], poll='cameraOdometry')

@ -8,7 +8,6 @@ if TICI:
os.environ['QCOM'] = '1'
else:
from openpilot.selfdrive.modeld.runners.ort_helpers import make_onnx_cpu_runner
import gc
import math
import time
import pickle
@ -21,7 +20,7 @@ from cereal import messaging
from cereal.messaging import PubMaster, SubMaster
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.common.swaglog import cloudlog
from openpilot.common.realtime import set_realtime_priority
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics, DM_INPUT_SIZE
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
@ -140,9 +139,8 @@ def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts:
def main():
gc.disable()
setproctitle(PROCESS_NAME)
set_realtime_priority(1)
config_realtime_process([0, 1, 2, 3], 5)
sentry.set_tag("daemon", PROCESS_NAME)
cloudlog.bind(daemon=PROCESS_NAME)

@ -1,15 +1,12 @@
#!/usr/bin/env python3
import gc
import cereal.messaging as messaging
from openpilot.common.params import Params
from openpilot.common.realtime import set_realtime_priority
from openpilot.common.realtime import config_realtime_process
from openpilot.selfdrive.monitoring.helpers import DriverMonitoring
def dmonitoringd_thread():
gc.disable()
set_realtime_priority(2)
config_realtime_process([0, 1, 2, 3], 5)
params = Params()
pm = messaging.PubMaster(['driverMonitoringState'])

@ -7,7 +7,7 @@ import cereal.messaging as messaging
from cereal import car, log
from msgq.visionipc import VisionIpcClient, VisionStreamType
from panda import ALTERNATIVE_EXPERIENCE
from opendbc.safety import ALTERNATIVE_EXPERIENCE
from openpilot.common.params import Params

@ -66,7 +66,7 @@ class Maneuver:
print("Crashed!!!!")
valid = False
if self.ensure_start and log['v_rel'] > 0 and log['speeds'][-1] <= 0.1:
if self.ensure_start and log['v_rel'] > 0 and log['acceleration'] < 1e-3:
print('LongitudinalPlanner not starting!')
valid = False

@ -30,8 +30,8 @@ class Plant:
self.distance = 0.
self.speed = speed
self.should_stop = False
self.acceleration = 0.0
self.speeds = []
# lead car
self.lead_relevancy = lead_relevancy
@ -134,9 +134,9 @@ class Plant:
'liveParameters': lp.liveParameters,
'modelV2': model.modelV2}
self.planner.update(sm)
self.speed = self.planner.v_desired_filter.x
self.acceleration = self.planner.a_desired
self.speeds = self.planner.v_desired_trajectory.tolist()
self.acceleration = self.planner.output_a_target
self.speed = self.speed + self.acceleration * self.ts
self.should_stop = self.planner.output_should_stop
fcw = self.planner.fcw
self.distance_lead = self.distance_lead + v_lead * self.ts
@ -168,7 +168,7 @@ class Plant:
"distance": self.distance,
"speed": self.speed,
"acceleration": self.acceleration,
"speeds": self.speeds,
"should_stop": self.should_stop,
"distance_lead": self.distance_lead,
"fcw": fcw,
}

@ -150,10 +150,7 @@ def create_maneuvers(kwargs):
enabled=False,
**kwargs,
),
]
if not kwargs['e2e']:
# allow_throttle won't trigger with e2e
maneuvers.append(Maneuver(
Maneuver(
"slow to 5m/s with allow_throttle = False and pitch = +0.1",
duration=30.,
initial_speed=20.,
@ -164,7 +161,7 @@ def create_maneuvers(kwargs):
breakpoints=[0.0, 2., 2.01],
ensure_slowdown=True,
**kwargs,
))
)]
if not kwargs['force_decel']:
# controls relies on planner commanding to move for stock-ACC resume spamming
maneuvers.append(Maneuver(

@ -6,15 +6,15 @@ import traceback
from cereal import messaging, car, log
from opendbc.car.fingerprints import MIGRATION
from opendbc.car.toyota.values import EPS_SCALE
from opendbc.car.ford.values import CAR as FORD, FordFlags
from opendbc.car.toyota.values import EPS_SCALE, ToyotaSafetyFlags
from opendbc.car.ford.values import CAR as FORD, FordFlags, FordSafetyFlags
from opendbc.car.hyundai.values import HyundaiSafetyFlags
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.fill_model_msg import fill_xyz_poly, fill_lane_line_meta
from openpilot.selfdrive.test.process_replay.vision_meta import meta_from_encode_index
from openpilot.selfdrive.controls.lib.longitudinal_planner import get_accel_from_plan
from openpilot.system.manager.process_config import managed_processes
from openpilot.tools.lib.logreader import LogIterable
from panda import Panda
MessageWithIndex = tuple[int, capnp.lib.capnp._DynamicStructReader]
MigrationOps = tuple[list[tuple[int, capnp.lib.capnp._DynamicStructReader]], list[capnp.lib.capnp._DynamicStructReader], list[int]]
@ -269,19 +269,19 @@ def migrate_carOutput(msgs):
def migrate_pandaStates(msgs):
# TODO: safety param migration should be handled automatically
safety_param_migration = {
"TOYOTA_PRIUS": EPS_SCALE["TOYOTA_PRIUS"] | Panda.FLAG_TOYOTA_STOCK_LONGITUDINAL,
"TOYOTA_RAV4": EPS_SCALE["TOYOTA_RAV4"] | Panda.FLAG_TOYOTA_ALT_BRAKE,
"KIA_EV6": Panda.FLAG_HYUNDAI_EV_GAS | Panda.FLAG_HYUNDAI_CANFD_HDA2,
"TOYOTA_PRIUS": EPS_SCALE["TOYOTA_PRIUS"] | ToyotaSafetyFlags.FLAG_TOYOTA_STOCK_LONGITUDINAL,
"TOYOTA_RAV4": EPS_SCALE["TOYOTA_RAV4"] | ToyotaSafetyFlags.FLAG_TOYOTA_ALT_BRAKE,
"KIA_EV6": HyundaiSafetyFlags.FLAG_HYUNDAI_EV_GAS | HyundaiSafetyFlags.FLAG_HYUNDAI_CANFD_HDA2,
}
# TODO: get new Ford route
safety_param_migration |= {car: Panda.FLAG_FORD_LONG_CONTROL for car in (set(FORD) - FORD.with_flags(FordFlags.CANFD))}
safety_param_migration |= {car: FordSafetyFlags.FLAG_FORD_LONG_CONTROL for car in (set(FORD) - FORD.with_flags(FordFlags.CANFD))}
# Migrate safety param base on carParams
CP = next((m.carParams for _, m in msgs if m.which() == 'carParams'), None)
assert CP is not None, "carParams message not found"
fingerprint = MIGRATION.get(CP.carFingerprint, CP.carFingerprint)
if fingerprint in safety_param_migration:
safety_param = safety_param_migration[fingerprint]
safety_param = safety_param_migration[fingerprint].value
elif len(CP.safetyConfigs):
safety_param = CP.safetyConfigs[0].safetyParam
if CP.safetyConfigs[0].safetyParamDEPRECATED != 0:

@ -18,11 +18,11 @@ from cereal import car
from cereal.services import SERVICE_LIST
from msgq.visionipc import VisionIpcServer, get_endpoint_name as vipc_get_endpoint_name
from opendbc.car.car_helpers import get_car, interfaces
from opendbc.safety import ALTERNATIVE_EXPERIENCE
from openpilot.common.params import Params
from openpilot.common.prefix import OpenpilotPrefix
from openpilot.common.timeout import Timeout
from openpilot.common.realtime import DT_CTRL
from panda.python import ALTERNATIVE_EXPERIENCE
from openpilot.selfdrive.car.card import can_comm_callbacks
from openpilot.system.manager.process_config import managed_processes
from openpilot.selfdrive.test.process_replay.vision_meta import meta_from_camera_state, available_streams

@ -1 +1 @@
95f1384edc0dc00959b0e804de1aaafc35d2f15f
b8595cc8351043a7c49b41e7c36f93ffd2e3dc6d

@ -34,7 +34,7 @@ CPU usage budget
TEST_DURATION = 25
LOG_OFFSET = 8
MAX_TOTAL_CPU = 275. # total for all 8 cores
MAX_TOTAL_CPU = 280. # total for all 8 cores
PROCS = {
# Baseline CPU usage by process
"selfdrive.controls.controlsd": 16.0,
@ -42,7 +42,7 @@ PROCS = {
"selfdrive.car.card": 26.0,
"./loggerd": 14.0,
"./encoderd": 17.0,
"./camerad": 14.5,
"./camerad": 10.0,
"selfdrive.controls.plannerd": 9.0,
"./ui": 18.0,
"selfdrive.locationd.paramsd": 9.0,
@ -99,12 +99,12 @@ TIMINGS = {
"wideRoadCameraState": [1.5, 0.35],
}
LOGS_SIZE_RATE = {
"qlog.zst": 0.0083,
"rlog.zst": 0.135,
"qcamera.ts": 0.03828,
LOGS_SIZE = { # MB per segment
"qlog.zst": 0.5,
"rlog.zst": 8.1,
"qcamera.ts": 2.3,
}
LOGS_SIZE_RATE.update(dict.fromkeys(['ecamera.hevc', 'fcamera.hevc'], 1.2740))
LOGS_SIZE.update(dict.fromkeys(['ecamera.hevc', 'fcamera.hevc', 'dcamera.hevc'], 76.5))
def cputime_total(ct):
@ -126,6 +126,7 @@ class TestOnroad:
# setup env
params = Params()
params.remove("CurrentRoute")
params.put_bool("RecordFront", True)
set_params_enabled()
os.environ['REPLAY'] = '1'
os.environ['TESTING_CLOSET'] = '1'
@ -212,12 +213,13 @@ class TestOnroad:
big_logs = [f for f, n in cnt.most_common(3) if n / sum(cnt.values()) > 30.]
assert len(big_logs) == 0, f"Log spam: {big_logs}"
def test_log_sizes(self):
def test_log_sizes(self, subtests):
for f, sz in self.log_sizes.items():
rate = LOGS_SIZE_RATE[f.name]
minn = rate * TEST_DURATION * 0.8
maxx = rate * TEST_DURATION * 1.2
assert minn < sz < maxx
rate = LOGS_SIZE[f.name]/60.
minn = rate * TEST_DURATION * 0.5
maxx = rate * TEST_DURATION * 1.5
with subtests.test(file=f.name):
assert minn < sz < maxx
def test_ui_timings(self):
result = "\n"
@ -311,24 +313,8 @@ class TestOnroad:
def test_gpu_usage(self):
assert self.gpu_procs == {"weston", "ui", "camerad", "selfdrive.modeld.modeld", "selfdrive.modeld.dmonitoringmodeld"}
def test_camera_processing_time(self):
result = "\n"
result += "------------------------------------------------\n"
result += "-------------- ImgProc Timing ------------------\n"
result += "------------------------------------------------\n"
ts = []
for s in ['roadCameraState', 'driverCameraState', 'wideCameraState']:
ts.extend(getattr(m, s).processingTime for m in self.msgs[s])
assert min(ts) < 0.025, f"high execution time: {min(ts)}"
result += f"execution time: min {min(ts):.5f}s\n"
result += f"execution time: max {max(ts):.5f}s\n"
result += f"execution time: mean {np.mean(ts):.5f}s\n"
result += "------------------------------------------------\n"
print(result)
@pytest.mark.skip("TODO: enable once timings are fixed")
def test_camera_frame_timings(self):
def test_camera_frame_timings(self, subtests):
result = "\n"
result += "------------------------------------------------\n"
result += "----------------- SoF Timing ------------------\n"
@ -337,11 +323,12 @@ class TestOnroad:
ts = [getattr(m, m.which()).timestampSof for m in self.lr if name in m.which()]
d_ms = np.diff(ts) / 1e6
d50 = np.abs(d_ms-50)
assert max(d50) < 1.0, f"high sof delta vs 50ms: {max(d50)}"
result += f"{name} sof delta vs 50ms: min {min(d50):.5f}s\n"
result += f"{name} sof delta vs 50ms: max {max(d50):.5f}s\n"
result += f"{name} sof delta vs 50ms: mean {d50.mean():.5f}s\n"
result += "------------------------------------------------\n"
with subtests.test(camera=name):
assert max(d50) < 1.0, f"high SOF delta vs 50ms: {max(d50)}"
result += "------------------------------------------------\n"
print(result)
def test_mpc_execution_timings(self):

@ -55,7 +55,7 @@ public:
float fl_pix = 0;
CameraState(SpectraMaster *master, const CameraConfig &config) : camera(master, config, config.stream_type == VISION_STREAM_DRIVER ? ISP_BPS_PROCESSED : ISP_IFE_PROCESSED) {};
CameraState(SpectraMaster *master, const CameraConfig &config) : camera(master, config, config.stream_type == VISION_STREAM_ROAD ? ISP_RAW_OUTPUT : ISP_IFE_PROCESSED) {};
~CameraState();
void init(VisionIpcServer *v, cl_device_id device_id, cl_context ctx);
void update_exposure_score(float desired_ev, int exp_t, int exp_g_idx, float exp_gain);
@ -283,7 +283,7 @@ void camerad_thread() {
// *** per-cam init ***
std::vector<std::unique_ptr<CameraState>> cams;
for (const auto &config : {WIDE_ROAD_CAMERA_CONFIG, ROAD_CAMERA_CONFIG, DRIVER_CAMERA_CONFIG}) {
for (const auto &config : {WIDE_ROAD_CAMERA_CONFIG, DRIVER_CAMERA_CONFIG, ROAD_CAMERA_CONFIG}) {
auto cam = std::make_unique<CameraState>(&m, config);
cam->init(&v, device_id, ctx);
cams.emplace_back(std::move(cam));

@ -31,7 +31,7 @@ class Proc:
PROCS = [
Proc(['camerad'], 1.6, msgs=['roadCameraState', 'wideRoadCameraState', 'driverCameraState']),
Proc(['camerad'], 1.75, msgs=['roadCameraState', 'wideRoadCameraState', 'driverCameraState']),
Proc(['modeld'], 1.12, atol=0.2, msgs=['modelV2']),
Proc(['dmonitoringmodeld'], 0.6, msgs=['driverStateV2']),
Proc(['encoderd'], 0.23, msgs=[]),

@ -1,11 +1,12 @@
import traceback
import cereal.messaging as messaging
from opendbc.can.packer import CANPacker
from opendbc.can.parser import CANParser
from opendbc.car.honda.values import HondaSafetyFlags
from openpilot.common.params import Params
from openpilot.selfdrive.pandad.pandad_api_impl import can_list_to_can_capnp
from openpilot.tools.sim.lib.common import SimulatorState
from panda.python import Panda
class SimulatedCar:
@ -94,14 +95,18 @@ class SimulatedCar:
'controlsAllowed': True,
'safetyModel': 'hondaBosch',
'alternativeExperience': self.sm["carParams"].alternativeExperience,
'safetyParam': Panda.FLAG_HONDA_RADARLESS | Panda.FLAG_HONDA_BOSCH_LONG,
'safetyParam': HondaSafetyFlags.FLAG_HONDA_RADARLESS.value | HondaSafetyFlags.FLAG_HONDA_BOSCH_LONG.value,
}
self.pm.send('pandaStates', dat)
def update(self, simulator_state: SimulatorState):
self.send_can_messages(simulator_state)
try:
self.send_can_messages(simulator_state)
if self.idx % 50 == 0: # only send panda states at 2hz
self.send_panda_state(simulator_state)
if self.idx % 50 == 0: # only send panda states at 2hz
self.send_panda_state(simulator_state)
self.idx += 1
self.idx += 1
except Exception:
traceback.print_exc()
raise

Loading…
Cancel
Save