pull/30773/head
Adeeb Shihadeh 2 years ago
parent b37c587c23
commit e2e03416d0
  1. 7
      common/SConscript
  2. 5
      common/kalman/SConscript
  3. 46
      common/kalman/simple_kalman.py
  4. 18
      common/kalman/simple_kalman_impl.pxd
  5. 37
      common/kalman/simple_kalman_impl.pyx
  6. 50
      common/kalman/simple_kalman_old.py
  7. 56
      common/kalman/tests/test_simple_kalman.py

@ -31,11 +31,10 @@ if GetOption('extras'):
params_python = envCython.Program('params_pyx.so', 'params_pyx.pyx', LIBS=envCython['LIBS'] + [_common, 'zmq', 'json11'])
SConscript([
'kalman/SConscript',
'transformations/SConscript'
'transformations/SConscript',
])
Import('simple_kalman_python', 'transformations_python')
common_python = [params_python, simple_kalman_python, transformations_python]
Import('transformations_python')
common_python = [params_python, transformations_python]
Export('common_python')

@ -1,5 +0,0 @@
Import('envCython')
simple_kalman_python = envCython.Program('simple_kalman_impl.so', 'simple_kalman_impl.pyx')
Export('simple_kalman_python')

@ -1,7 +1,6 @@
from openpilot.common.kalman.simple_kalman_impl import KF1D as KF1D
assert KF1D
import numpy as np
def get_kalman_gain(dt, A, C, Q, R, iterations=100):
P = np.zeros_like(Q)
for _ in range(iterations):
@ -10,3 +9,46 @@ def get_kalman_gain(dt, A, C, Q, R, iterations=100):
K = P.dot(C.T).dot(np.linalg.inv(S))
P = (np.eye(len(P)) - K.dot(C)).dot(P)
return K
class KF1D:
# this EKF assumes constant covariance matrix, so calculations are much simpler
# the Kalman gain also needs to be precomputed using the control module
def __init__(self, x0, A, C, K):
self.x0_0 = x0[0][0]
self.x1_0 = x0[1][0]
self.A0_0 = A[0][0]
self.A0_1 = A[0][1]
self.A1_0 = A[1][0]
self.A1_1 = A[1][1]
self.C0_0 = C[0]
self.C0_1 = C[1]
self.K0_0 = K[0][0]
self.K1_0 = K[1][0]
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1
# K matrix needs to be pre-computed as follow:
# import control
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R)
# self.K = np.transpose(K)
def update(self, meas):
#self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas)
x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas
x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas
self.x0_0 = x0_0
self.x1_0 = x1_0
return [self.x0_0, self.x1_0]
@property
def x(self):
return [[self.x0_0], [self.x1_0]]
def set_x(self, x):
self.x0_0 = x[0][0]
self.x1_0 = x[1][0]

@ -1,18 +0,0 @@
# cython: language_level = 3
cdef class KF1D:
cdef public:
double x0_0
double x1_0
double K0_0
double K1_0
double A0_0
double A0_1
double A1_0
double A1_1
double C0_0
double C0_1
double A_K_0
double A_K_1
double A_K_2
double A_K_3

@ -1,37 +0,0 @@
# distutils: language = c++
# cython: language_level=3
cdef class KF1D:
def __init__(self, x0, A, C, K):
self.x0_0 = x0[0][0]
self.x1_0 = x0[1][0]
self.A0_0 = A[0][0]
self.A0_1 = A[0][1]
self.A1_0 = A[1][0]
self.A1_1 = A[1][1]
self.C0_0 = C[0]
self.C0_1 = C[1]
self.K0_0 = K[0][0]
self.K1_0 = K[1][0]
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1
def update(self, meas):
cdef double x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas
cdef double x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas
self.x0_0 = x0_0
self.x1_0 = x1_0
return [self.x0_0, self.x1_0]
@property
def x(self):
return [[self.x0_0], [self.x1_0]]
@x.setter
def x(self, x):
self.x0_0 = x[0][0]
self.x1_0 = x[1][0]

@ -1,50 +0,0 @@
import numpy as np
class KF1D:
# this EKF assumes constant covariance matrix, so calculations are much simpler
# the Kalman gain also needs to be precomputed using the control module
def __init__(self, x0, A, C, K):
self.x = x0
self.A = A
self.C = np.atleast_2d(C)
self.K = K
self.A_K = self.A - np.dot(self.K, self.C)
self.x0_0 = x0[0][0]
self.x1_0 = x0[1][0]
self.A0_0 = A[0][0]
self.A0_1 = A[0][1]
self.A1_0 = A[1][0]
self.A1_1 = A[1][1]
self.C0_0 = C[0]
self.C0_1 = C[1]
self.K0_0 = K[0][0]
self.K1_0 = K[1][0]
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1
# K matrix needs to be pre-computed as follow:
# import control
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R)
# self.K = np.transpose(K)
#def update(self, meas):
# self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas)
# return self.x
def update(self, meas):
x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas
x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas
self.x0_0 = x0_0
self.x1_0 = x1_0
return [self.x0_0, self.x1_0]

@ -1,10 +1,6 @@
import unittest
import random
import timeit
import numpy as np
from openpilot.common.kalman.simple_kalman import KF1D
from openpilot.common.kalman.simple_kalman_old import KF1D as KF1D_old
class TestSimpleKalman(unittest.TestCase):
@ -21,69 +17,19 @@ class TestSimpleKalman(unittest.TestCase):
K0_0 = 0.12287673
K1_0 = 0.29666309
self.kf_old = KF1D_old(x0=np.array([[x0_0], [x1_0]]),
A=np.array([[A0_0, A0_1], [A1_0, A1_1]]),
C=np.array([C0_0, C0_1]),
K=np.array([[K0_0], [K1_0]]))
self.kf = KF1D(x0=[[x0_0], [x1_0]],
A=[[A0_0, A0_1], [A1_0, A1_1]],
C=[C0_0, C0_1],
K=[[K0_0], [K1_0]])
def test_getter_setter(self):
self.kf.x = [[1.0], [1.0]]
self.kf.set_x([[1.0], [1.0]])
self.assertEqual(self.kf.x, [[1.0], [1.0]])
def update_returns_state(self):
x = self.kf.update(100)
self.assertEqual(x, self.kf.x)
def test_old_equal_new(self):
for _ in range(1000):
v_wheel = random.uniform(0, 200)
x_old = self.kf_old.update(v_wheel)
x = self.kf.update(v_wheel)
# Compare the output x, verify that the error is less than 1e-4
np.testing.assert_almost_equal(x_old[0], x[0])
np.testing.assert_almost_equal(x_old[1], x[1])
def test_new_is_faster(self):
setup = """
import numpy as np
from openpilot.common.kalman.simple_kalman import KF1D
from openpilot.common.kalman.simple_kalman_old import KF1D as KF1D_old
dt = 0.01
x0_0 = 0.0
x1_0 = 0.0
A0_0 = 1.0
A0_1 = dt
A1_0 = 0.0
A1_1 = 1.0
C0_0 = 1.0
C0_1 = 0.0
K0_0 = 0.12287673
K1_0 = 0.29666309
kf_old = KF1D_old(x0=np.array([[x0_0], [x1_0]]),
A=np.array([[A0_0, A0_1], [A1_0, A1_1]]),
C=np.array([C0_0, C0_1]),
K=np.array([[K0_0], [K1_0]]))
kf = KF1D(x0=[[x0_0], [x1_0]],
A=[[A0_0, A0_1], [A1_0, A1_1]],
C=[C0_0, C0_1],
K=[[K0_0], [K1_0]])
"""
kf_speed = timeit.timeit("kf.update(1234)", setup=setup, number=10000)
kf_old_speed = timeit.timeit("kf_old.update(1234)", setup=setup, number=10000)
print("speed", kf_speed)
print("speed old", kf_old_speed)
self.assertTrue(kf_speed < kf_old_speed / 4)
if __name__ == "__main__":
unittest.main()

Loading…
Cancel
Save