parent
b37c587c23
commit
e2e03416d0
7 changed files with 48 additions and 171 deletions
@ -1,5 +0,0 @@ |
||||
Import('envCython') |
||||
|
||||
simple_kalman_python = envCython.Program('simple_kalman_impl.so', 'simple_kalman_impl.pyx') |
||||
|
||||
Export('simple_kalman_python') |
@ -1,18 +0,0 @@ |
||||
# cython: language_level = 3 |
||||
|
||||
cdef class KF1D: |
||||
cdef public: |
||||
double x0_0 |
||||
double x1_0 |
||||
double K0_0 |
||||
double K1_0 |
||||
double A0_0 |
||||
double A0_1 |
||||
double A1_0 |
||||
double A1_1 |
||||
double C0_0 |
||||
double C0_1 |
||||
double A_K_0 |
||||
double A_K_1 |
||||
double A_K_2 |
||||
double A_K_3 |
@ -1,37 +0,0 @@ |
||||
# distutils: language = c++ |
||||
# cython: language_level=3 |
||||
|
||||
cdef class KF1D: |
||||
def __init__(self, x0, A, C, K): |
||||
self.x0_0 = x0[0][0] |
||||
self.x1_0 = x0[1][0] |
||||
self.A0_0 = A[0][0] |
||||
self.A0_1 = A[0][1] |
||||
self.A1_0 = A[1][0] |
||||
self.A1_1 = A[1][1] |
||||
self.C0_0 = C[0] |
||||
self.C0_1 = C[1] |
||||
self.K0_0 = K[0][0] |
||||
self.K1_0 = K[1][0] |
||||
|
||||
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0 |
||||
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1 |
||||
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0 |
||||
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1 |
||||
|
||||
def update(self, meas): |
||||
cdef double x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas |
||||
cdef double x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas |
||||
self.x0_0 = x0_0 |
||||
self.x1_0 = x1_0 |
||||
|
||||
return [self.x0_0, self.x1_0] |
||||
|
||||
@property |
||||
def x(self): |
||||
return [[self.x0_0], [self.x1_0]] |
||||
|
||||
@x.setter |
||||
def x(self, x): |
||||
self.x0_0 = x[0][0] |
||||
self.x1_0 = x[1][0] |
@ -1,50 +0,0 @@ |
||||
import numpy as np |
||||
|
||||
|
||||
class KF1D: |
||||
# this EKF assumes constant covariance matrix, so calculations are much simpler |
||||
# the Kalman gain also needs to be precomputed using the control module |
||||
|
||||
def __init__(self, x0, A, C, K): |
||||
self.x = x0 |
||||
self.A = A |
||||
self.C = np.atleast_2d(C) |
||||
self.K = K |
||||
|
||||
self.A_K = self.A - np.dot(self.K, self.C) |
||||
|
||||
self.x0_0 = x0[0][0] |
||||
self.x1_0 = x0[1][0] |
||||
self.A0_0 = A[0][0] |
||||
self.A0_1 = A[0][1] |
||||
self.A1_0 = A[1][0] |
||||
self.A1_1 = A[1][1] |
||||
self.C0_0 = C[0] |
||||
self.C0_1 = C[1] |
||||
self.K0_0 = K[0][0] |
||||
self.K1_0 = K[1][0] |
||||
|
||||
self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0 |
||||
self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1 |
||||
self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0 |
||||
self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1 |
||||
|
||||
|
||||
# K matrix needs to be pre-computed as follow: |
||||
# import control |
||||
# (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R) |
||||
# self.K = np.transpose(K) |
||||
|
||||
#def update(self, meas): |
||||
# self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas) |
||||
# return self.x |
||||
|
||||
def update(self, meas): |
||||
x0_0 = self.A_K_0 * self.x0_0 + self.A_K_1 * self.x1_0 + self.K0_0 * meas |
||||
x1_0 = self.A_K_2 * self.x0_0 + self.A_K_3 * self.x1_0 + self.K1_0 * meas |
||||
self.x0_0 = x0_0 |
||||
self.x1_0 = x1_0 |
||||
|
||||
return [self.x0_0, self.x1_0] |
||||
|
||||
|
Loading…
Reference in new issue