system/ui: implement driver monitoring UI (#35358)
* pyui_driver_state_reander * ddd * draw_spline_linear * pre-calculate the face keypoints transform * remove int convert * improve * use draw_spline_linear * pre-calc points * state updated * render to texture * Revert "render to texture" This reverts commit 27be710f4c7aca3bb05e94ad69635d292e799ff4. * cleanup * dd * new dataclass * cleanup * use content_rectpull/35390/head
parent
29010cae23
commit
e6eef5d9d0
2 changed files with 241 additions and 0 deletions
@ -0,0 +1,238 @@ |
||||
import numpy as np |
||||
import pyray as rl |
||||
from dataclasses import dataclass |
||||
from openpilot.system.ui.lib.application import gui_app |
||||
|
||||
# Default 3D coordinates for face keypoints as a NumPy array |
||||
DEFAULT_FACE_KPTS_3D = np.array([ |
||||
[-5.98, -51.20, 8.00], [-17.64, -49.14, 8.00], [-23.81, -46.40, 8.00], [-29.98, -40.91, 8.00], |
||||
[-32.04, -37.49, 8.00], [-34.10, -32.00, 8.00], [-36.16, -21.03, 8.00], [-36.16, 6.40, 8.00], |
||||
[-35.47, 10.51, 8.00], [-32.73, 19.43, 8.00], [-29.30, 26.29, 8.00], [-24.50, 33.83, 8.00], |
||||
[-19.01, 41.37, 8.00], [-14.21, 46.17, 8.00], [-12.16, 47.54, 8.00], [-4.61, 49.60, 8.00], |
||||
[4.99, 49.60, 8.00], [12.53, 47.54, 8.00], [14.59, 46.17, 8.00], [19.39, 41.37, 8.00], |
||||
[24.87, 33.83, 8.00], [29.67, 26.29, 8.00], [33.10, 19.43, 8.00], [35.84, 10.51, 8.00], |
||||
[36.53, 6.40, 8.00], [36.53, -21.03, 8.00], [34.47, -32.00, 8.00], [32.42, -37.49, 8.00], |
||||
[30.36, -40.91, 8.00], [24.19, -46.40, 8.00], [18.02, -49.14, 8.00], [6.36, -51.20, 8.00], |
||||
[-5.98, -51.20, 8.00], |
||||
], dtype=np.float32) |
||||
|
||||
# UI constants |
||||
UI_BORDER_SIZE = 30 |
||||
BTN_SIZE = 192 |
||||
IMG_SIZE = 144 |
||||
ARC_LENGTH = 133 |
||||
ARC_THICKNESS_DEFAULT = 6.7 |
||||
ARC_THICKNESS_EXTEND = 12.0 |
||||
|
||||
SCALES_POS = np.array([0.9, 0.4, 0.4], dtype=np.float32) |
||||
SCALES_NEG = np.array([0.7, 0.4, 0.4], dtype=np.float32) |
||||
|
||||
@dataclass |
||||
class ArcData: |
||||
"""Data structure for arc rendering parameters.""" |
||||
x: float |
||||
y: float |
||||
width: float |
||||
height: float |
||||
thickness: float |
||||
|
||||
class DriverStateRenderer: |
||||
def __init__(self): |
||||
# Initial state with NumPy arrays |
||||
self.face_kpts_draw = DEFAULT_FACE_KPTS_3D.copy() |
||||
self.is_active = False |
||||
self.is_rhd = False |
||||
self.dm_fade_state = 0.0 |
||||
self.state_updated = False |
||||
self.last_rect: rl.Rectangle = rl.Rectangle(0, 0, 0, 0) |
||||
self.driver_pose_vals = np.zeros(3, dtype=np.float32) |
||||
self.driver_pose_diff = np.zeros(3, dtype=np.float32) |
||||
self.driver_pose_sins = np.zeros(3, dtype=np.float32) |
||||
self.driver_pose_coss = np.zeros(3, dtype=np.float32) |
||||
self.face_keypoints_transformed = np.zeros((DEFAULT_FACE_KPTS_3D.shape[0], 2), dtype=np.float32) |
||||
self.position_x: float = 0.0 |
||||
self.position_y: float = 0.0 |
||||
self.h_arc_data = None |
||||
self.v_arc_data = None |
||||
|
||||
# Pre-allocate drawing arrays |
||||
self.face_lines = [rl.Vector2(0, 0) for _ in range(len(DEFAULT_FACE_KPTS_3D))] |
||||
self.h_arc_lines = [rl.Vector2(0, 0) for _ in range(37)] # 37 points for horizontal arc |
||||
self.v_arc_lines = [rl.Vector2(0, 0) for _ in range(37)] # 37 points for vertical arc |
||||
|
||||
# Load the driver face icon |
||||
self.dm_img = gui_app.texture("icons/driver_face.png", IMG_SIZE, IMG_SIZE) |
||||
|
||||
# Colors |
||||
self.white_color = rl.Color(255, 255, 255, 255) |
||||
self.arc_color = rl.Color(26, 242, 66, 255) |
||||
self.engaged_color = rl.Color(26, 242, 66, 255) |
||||
self.disengaged_color = rl.Color(139, 139, 139, 255) |
||||
|
||||
def draw(self, rect, sm): |
||||
if not self._is_visible(sm): |
||||
return |
||||
|
||||
self._update_state(sm, rect) |
||||
if not self.state_updated: |
||||
return |
||||
|
||||
# Set opacity based on active state |
||||
opacity = 0.65 if self.is_active else 0.2 |
||||
|
||||
# Draw background circle |
||||
rl.draw_circle(int(self.position_x), int(self.position_y), BTN_SIZE // 2, rl.Color(0, 0, 0, 70)) |
||||
|
||||
# Draw face icon |
||||
icon_pos = rl.Vector2(self.position_x - self.dm_img.width // 2, self.position_y - self.dm_img.height // 2) |
||||
rl.draw_texture_v(self.dm_img, icon_pos, rl.Color(255, 255, 255, int(255 * opacity))) |
||||
|
||||
# Draw face outline |
||||
self.white_color.a = int(255 * opacity) |
||||
rl.draw_spline_linear(self.face_lines, len(self.face_lines), 5.2, self.white_color) |
||||
|
||||
# Set arc color based on engaged state |
||||
engaged = True |
||||
self.arc_color = self.engaged_color if engaged else self.disengaged_color |
||||
self.arc_color.a = int(0.4 * 255 * (1.0 - self.dm_fade_state)) # Fade out when inactive |
||||
|
||||
# Draw arcs |
||||
if self.h_arc_data: |
||||
rl.draw_spline_linear(self.h_arc_lines, len(self.h_arc_lines), self.h_arc_data.thickness, self.arc_color) |
||||
if self.v_arc_data: |
||||
rl.draw_spline_linear(self.v_arc_lines, len(self.v_arc_lines), self.v_arc_data.thickness, self.arc_color) |
||||
|
||||
def _is_visible(self, sm): |
||||
"""Check if the visualization should be rendered.""" |
||||
return (sm.seen['driverStateV2'] and |
||||
sm.seen['driverMonitoringState'] and |
||||
sm['selfdriveState'].alertSize == 0) |
||||
|
||||
def _update_state(self, sm, rect): |
||||
"""Update the driver monitoring state based on model data""" |
||||
if not sm.updated["driverMonitoringState"]: |
||||
if self.state_updated and (rect.x != self.last_rect.x or rect.y != self.last_rect.y or \ |
||||
rect.width != self.last_rect.width or rect.height != self.last_rect.height): |
||||
self.pre_calculate_drawing_elements(rect) |
||||
return |
||||
|
||||
# Get monitoring state |
||||
dm_state = sm["driverMonitoringState"] |
||||
self.is_active = dm_state.isActiveMode |
||||
self.is_rhd = dm_state.isRHD |
||||
|
||||
# Update fade state (smoother transition between active/inactive) |
||||
fade_target = 0.0 if self.is_active else 0.5 |
||||
self.dm_fade_state = np.clip(self.dm_fade_state + 0.2 * (fade_target - self.dm_fade_state), 0.0, 1.0) |
||||
|
||||
# Get driver orientation data from appropriate camera |
||||
driverstate = sm["driverStateV2"] |
||||
driver_data = driverstate.rightDriverData if self.is_rhd else driverstate.leftDriverData |
||||
driver_orient = driver_data.faceOrientation |
||||
|
||||
# Update pose values with scaling and smoothing |
||||
driver_orient = np.array(driver_orient) |
||||
scales = np.where(driver_orient < 0, SCALES_NEG, SCALES_POS) |
||||
v_this = driver_orient * scales |
||||
self.driver_pose_diff = np.abs(self.driver_pose_vals - v_this) |
||||
self.driver_pose_vals = 0.8 * v_this + 0.2 * self.driver_pose_vals # Smooth changes |
||||
|
||||
# Apply fade to rotation and compute sin/cos |
||||
rotation_amount = self.driver_pose_vals * (1.0 - self.dm_fade_state) |
||||
self.driver_pose_sins = np.sin(rotation_amount) |
||||
self.driver_pose_coss = np.cos(rotation_amount) |
||||
|
||||
# Create rotation matrix for 3D face model |
||||
sin_y, sin_x, sin_z = self.driver_pose_sins |
||||
cos_y, cos_x, cos_z = self.driver_pose_coss |
||||
r_xyz = np.array( |
||||
[ |
||||
[cos_x * cos_z, cos_x * sin_z, -sin_x], |
||||
[-sin_y * sin_x * cos_z - cos_y * sin_z, -sin_y * sin_x * sin_z + cos_y * cos_z, -sin_y * cos_x], |
||||
[cos_y * sin_x * cos_z - sin_y * sin_z, cos_y * sin_x * sin_z + sin_y * cos_z, cos_y * cos_x], |
||||
] |
||||
) |
||||
|
||||
# Transform face keypoints using vectorized matrix multiplication |
||||
self.face_kpts_draw = DEFAULT_FACE_KPTS_3D @ r_xyz.T |
||||
self.face_kpts_draw[:, 2] = self.face_kpts_draw[:, 2] * (1.0 - self.dm_fade_state) + 8 * self.dm_fade_state |
||||
|
||||
# Pre-calculate the transformed keypoints |
||||
kp_depth = (self.face_kpts_draw[:, 2] - 8) / 120.0 + 1.0 |
||||
self.face_keypoints_transformed = self.face_kpts_draw[:, :2] * kp_depth[:, None] |
||||
|
||||
# Pre-calculate all drawing elements |
||||
self._pre_calculate_drawing_elements(rect) |
||||
self.state_updated = True |
||||
|
||||
def _pre_calculate_drawing_elements(self, rect): |
||||
"""Pre-calculate all drawing elements based on the current rectangle""" |
||||
# Calculate icon position (bottom-left or bottom-right) |
||||
width, height = rect.width, rect.height |
||||
offset = UI_BORDER_SIZE + BTN_SIZE // 2 |
||||
self.position_x = rect.x + (width - offset if self.is_rhd else offset) |
||||
self.position_y = rect.y + height - offset |
||||
|
||||
# Pre-calculate the face lines positions |
||||
positioned_keypoints = self.face_keypoints_transformed + np.array([self.position_x, self.position_y]) |
||||
for i in range(len(positioned_keypoints)): |
||||
self.face_lines[i].x = positioned_keypoints[i][0] |
||||
self.face_lines[i].y = positioned_keypoints[i][1] |
||||
|
||||
# Calculate arc dimensions based on head rotation |
||||
delta_x = -self.driver_pose_sins[1] * ARC_LENGTH / 2.0 # Horizontal movement |
||||
delta_y = -self.driver_pose_sins[0] * ARC_LENGTH / 2.0 # Vertical movement |
||||
|
||||
# Horizontal arc |
||||
h_width = abs(delta_x) |
||||
self.h_arc_data = self._calculate_arc_data( |
||||
delta_x, h_width, self.position_x, self.position_y - ARC_LENGTH / 2, |
||||
self.driver_pose_sins[1], self.driver_pose_diff[1], is_horizontal=True |
||||
) |
||||
|
||||
# Vertical arc |
||||
v_height = abs(delta_y) |
||||
self.v_arc_data = self._calculate_arc_data( |
||||
delta_y, v_height, self.position_x - ARC_LENGTH / 2, self.position_y, |
||||
self.driver_pose_sins[0], self.driver_pose_diff[0], is_horizontal=False |
||||
) |
||||
|
||||
def _calculate_arc_data( |
||||
self, delta: float, size: float, x: float, y: float, sin_val: float, diff_val: float, is_horizontal: bool |
||||
): |
||||
"""Calculate arc data and pre-compute arc points.""" |
||||
if size <= 0: |
||||
return None |
||||
|
||||
thickness = ARC_THICKNESS_DEFAULT + ARC_THICKNESS_EXTEND * min(1.0, diff_val * 5.0) |
||||
start_angle = (90 if sin_val > 0 else -90) if is_horizontal else (0 if sin_val > 0 else 180) |
||||
x = min(x + delta, x) if is_horizontal else x |
||||
y = y if is_horizontal else min(y + delta, y) |
||||
|
||||
arc_data = ArcData( |
||||
x=x, |
||||
y=y, |
||||
width=size if is_horizontal else ARC_LENGTH, |
||||
height=ARC_LENGTH if is_horizontal else size, |
||||
thickness=thickness, |
||||
) |
||||
|
||||
# Pre-calculate arc points |
||||
start_rad = np.deg2rad(start_angle) |
||||
end_rad = np.deg2rad(start_angle + 180) |
||||
angles = np.linspace(start_rad, end_rad, 37) |
||||
|
||||
center_x = x + arc_data.width / 2 |
||||
center_y = y + arc_data.height / 2 |
||||
radius_x = arc_data.width / 2 |
||||
radius_y = arc_data.height / 2 |
||||
|
||||
x_coords = center_x + np.cos(angles) * radius_x |
||||
y_coords = center_y + np.sin(angles) * radius_y |
||||
|
||||
arc_lines = self.h_arc_lines if is_horizontal else self.v_arc_lines |
||||
for i, (x_coord, y_coord) in enumerate(zip(x_coords, y_coords, strict=True)): |
||||
arc_lines[i].x = x_coord |
||||
arc_lines[i].y = y_coord |
||||
|
||||
return arc_data |
Loading…
Reference in new issue