system/ui: implement driver monitoring UI (#35358)

* pyui_driver_state_reander

* ddd

* draw_spline_linear

* pre-calculate the face keypoints transform

* remove int convert

* improve

* use draw_spline_linear

* pre-calc points

* state updated

* render to texture

* Revert "render to texture"

This reverts commit 27be710f4c7aca3bb05e94ad69635d292e799ff4.

* cleanup

* dd

* new dataclass

* cleanup

* use content_rect
pull/35390/head
Dean Lee 2 weeks ago committed by GitHub
parent 29010cae23
commit e6eef5d9d0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 3
      system/ui/onroad/augmented_road_view.py
  2. 238
      system/ui/onroad/driver_state.py

@ -4,6 +4,7 @@ from enum import Enum
from cereal import messaging, log
from msgq.visionipc import VisionStreamType
from openpilot.system.ui.onroad.driver_state import DriverStateRenderer
from openpilot.system.ui.onroad.model_renderer import ModelRenderer
from openpilot.system.ui.widgets.cameraview import CameraView
from openpilot.system.ui.lib.application import gui_app
@ -40,6 +41,7 @@ class AugmentedRoadView(CameraView):
self._content_rect = rl.Rectangle()
self.model_renderer = ModelRenderer()
self.driver_state_renderer = DriverStateRenderer()
def render(self, rect):
# Update calibration before rendering
@ -74,6 +76,7 @@ class AugmentedRoadView(CameraView):
# - Lead vehicle indicators
# - Additional features
self.model_renderer.draw(self._content_rect, self.sm)
self.driver_state_renderer.draw(self._content_rect, self.sm)
# End clipping region
rl.end_scissor_mode()

@ -0,0 +1,238 @@
import numpy as np
import pyray as rl
from dataclasses import dataclass
from openpilot.system.ui.lib.application import gui_app
# Default 3D coordinates for face keypoints as a NumPy array
DEFAULT_FACE_KPTS_3D = np.array([
[-5.98, -51.20, 8.00], [-17.64, -49.14, 8.00], [-23.81, -46.40, 8.00], [-29.98, -40.91, 8.00],
[-32.04, -37.49, 8.00], [-34.10, -32.00, 8.00], [-36.16, -21.03, 8.00], [-36.16, 6.40, 8.00],
[-35.47, 10.51, 8.00], [-32.73, 19.43, 8.00], [-29.30, 26.29, 8.00], [-24.50, 33.83, 8.00],
[-19.01, 41.37, 8.00], [-14.21, 46.17, 8.00], [-12.16, 47.54, 8.00], [-4.61, 49.60, 8.00],
[4.99, 49.60, 8.00], [12.53, 47.54, 8.00], [14.59, 46.17, 8.00], [19.39, 41.37, 8.00],
[24.87, 33.83, 8.00], [29.67, 26.29, 8.00], [33.10, 19.43, 8.00], [35.84, 10.51, 8.00],
[36.53, 6.40, 8.00], [36.53, -21.03, 8.00], [34.47, -32.00, 8.00], [32.42, -37.49, 8.00],
[30.36, -40.91, 8.00], [24.19, -46.40, 8.00], [18.02, -49.14, 8.00], [6.36, -51.20, 8.00],
[-5.98, -51.20, 8.00],
], dtype=np.float32)
# UI constants
UI_BORDER_SIZE = 30
BTN_SIZE = 192
IMG_SIZE = 144
ARC_LENGTH = 133
ARC_THICKNESS_DEFAULT = 6.7
ARC_THICKNESS_EXTEND = 12.0
SCALES_POS = np.array([0.9, 0.4, 0.4], dtype=np.float32)
SCALES_NEG = np.array([0.7, 0.4, 0.4], dtype=np.float32)
@dataclass
class ArcData:
"""Data structure for arc rendering parameters."""
x: float
y: float
width: float
height: float
thickness: float
class DriverStateRenderer:
def __init__(self):
# Initial state with NumPy arrays
self.face_kpts_draw = DEFAULT_FACE_KPTS_3D.copy()
self.is_active = False
self.is_rhd = False
self.dm_fade_state = 0.0
self.state_updated = False
self.last_rect: rl.Rectangle = rl.Rectangle(0, 0, 0, 0)
self.driver_pose_vals = np.zeros(3, dtype=np.float32)
self.driver_pose_diff = np.zeros(3, dtype=np.float32)
self.driver_pose_sins = np.zeros(3, dtype=np.float32)
self.driver_pose_coss = np.zeros(3, dtype=np.float32)
self.face_keypoints_transformed = np.zeros((DEFAULT_FACE_KPTS_3D.shape[0], 2), dtype=np.float32)
self.position_x: float = 0.0
self.position_y: float = 0.0
self.h_arc_data = None
self.v_arc_data = None
# Pre-allocate drawing arrays
self.face_lines = [rl.Vector2(0, 0) for _ in range(len(DEFAULT_FACE_KPTS_3D))]
self.h_arc_lines = [rl.Vector2(0, 0) for _ in range(37)] # 37 points for horizontal arc
self.v_arc_lines = [rl.Vector2(0, 0) for _ in range(37)] # 37 points for vertical arc
# Load the driver face icon
self.dm_img = gui_app.texture("icons/driver_face.png", IMG_SIZE, IMG_SIZE)
# Colors
self.white_color = rl.Color(255, 255, 255, 255)
self.arc_color = rl.Color(26, 242, 66, 255)
self.engaged_color = rl.Color(26, 242, 66, 255)
self.disengaged_color = rl.Color(139, 139, 139, 255)
def draw(self, rect, sm):
if not self._is_visible(sm):
return
self._update_state(sm, rect)
if not self.state_updated:
return
# Set opacity based on active state
opacity = 0.65 if self.is_active else 0.2
# Draw background circle
rl.draw_circle(int(self.position_x), int(self.position_y), BTN_SIZE // 2, rl.Color(0, 0, 0, 70))
# Draw face icon
icon_pos = rl.Vector2(self.position_x - self.dm_img.width // 2, self.position_y - self.dm_img.height // 2)
rl.draw_texture_v(self.dm_img, icon_pos, rl.Color(255, 255, 255, int(255 * opacity)))
# Draw face outline
self.white_color.a = int(255 * opacity)
rl.draw_spline_linear(self.face_lines, len(self.face_lines), 5.2, self.white_color)
# Set arc color based on engaged state
engaged = True
self.arc_color = self.engaged_color if engaged else self.disengaged_color
self.arc_color.a = int(0.4 * 255 * (1.0 - self.dm_fade_state)) # Fade out when inactive
# Draw arcs
if self.h_arc_data:
rl.draw_spline_linear(self.h_arc_lines, len(self.h_arc_lines), self.h_arc_data.thickness, self.arc_color)
if self.v_arc_data:
rl.draw_spline_linear(self.v_arc_lines, len(self.v_arc_lines), self.v_arc_data.thickness, self.arc_color)
def _is_visible(self, sm):
"""Check if the visualization should be rendered."""
return (sm.seen['driverStateV2'] and
sm.seen['driverMonitoringState'] and
sm['selfdriveState'].alertSize == 0)
def _update_state(self, sm, rect):
"""Update the driver monitoring state based on model data"""
if not sm.updated["driverMonitoringState"]:
if self.state_updated and (rect.x != self.last_rect.x or rect.y != self.last_rect.y or \
rect.width != self.last_rect.width or rect.height != self.last_rect.height):
self.pre_calculate_drawing_elements(rect)
return
# Get monitoring state
dm_state = sm["driverMonitoringState"]
self.is_active = dm_state.isActiveMode
self.is_rhd = dm_state.isRHD
# Update fade state (smoother transition between active/inactive)
fade_target = 0.0 if self.is_active else 0.5
self.dm_fade_state = np.clip(self.dm_fade_state + 0.2 * (fade_target - self.dm_fade_state), 0.0, 1.0)
# Get driver orientation data from appropriate camera
driverstate = sm["driverStateV2"]
driver_data = driverstate.rightDriverData if self.is_rhd else driverstate.leftDriverData
driver_orient = driver_data.faceOrientation
# Update pose values with scaling and smoothing
driver_orient = np.array(driver_orient)
scales = np.where(driver_orient < 0, SCALES_NEG, SCALES_POS)
v_this = driver_orient * scales
self.driver_pose_diff = np.abs(self.driver_pose_vals - v_this)
self.driver_pose_vals = 0.8 * v_this + 0.2 * self.driver_pose_vals # Smooth changes
# Apply fade to rotation and compute sin/cos
rotation_amount = self.driver_pose_vals * (1.0 - self.dm_fade_state)
self.driver_pose_sins = np.sin(rotation_amount)
self.driver_pose_coss = np.cos(rotation_amount)
# Create rotation matrix for 3D face model
sin_y, sin_x, sin_z = self.driver_pose_sins
cos_y, cos_x, cos_z = self.driver_pose_coss
r_xyz = np.array(
[
[cos_x * cos_z, cos_x * sin_z, -sin_x],
[-sin_y * sin_x * cos_z - cos_y * sin_z, -sin_y * sin_x * sin_z + cos_y * cos_z, -sin_y * cos_x],
[cos_y * sin_x * cos_z - sin_y * sin_z, cos_y * sin_x * sin_z + sin_y * cos_z, cos_y * cos_x],
]
)
# Transform face keypoints using vectorized matrix multiplication
self.face_kpts_draw = DEFAULT_FACE_KPTS_3D @ r_xyz.T
self.face_kpts_draw[:, 2] = self.face_kpts_draw[:, 2] * (1.0 - self.dm_fade_state) + 8 * self.dm_fade_state
# Pre-calculate the transformed keypoints
kp_depth = (self.face_kpts_draw[:, 2] - 8) / 120.0 + 1.0
self.face_keypoints_transformed = self.face_kpts_draw[:, :2] * kp_depth[:, None]
# Pre-calculate all drawing elements
self._pre_calculate_drawing_elements(rect)
self.state_updated = True
def _pre_calculate_drawing_elements(self, rect):
"""Pre-calculate all drawing elements based on the current rectangle"""
# Calculate icon position (bottom-left or bottom-right)
width, height = rect.width, rect.height
offset = UI_BORDER_SIZE + BTN_SIZE // 2
self.position_x = rect.x + (width - offset if self.is_rhd else offset)
self.position_y = rect.y + height - offset
# Pre-calculate the face lines positions
positioned_keypoints = self.face_keypoints_transformed + np.array([self.position_x, self.position_y])
for i in range(len(positioned_keypoints)):
self.face_lines[i].x = positioned_keypoints[i][0]
self.face_lines[i].y = positioned_keypoints[i][1]
# Calculate arc dimensions based on head rotation
delta_x = -self.driver_pose_sins[1] * ARC_LENGTH / 2.0 # Horizontal movement
delta_y = -self.driver_pose_sins[0] * ARC_LENGTH / 2.0 # Vertical movement
# Horizontal arc
h_width = abs(delta_x)
self.h_arc_data = self._calculate_arc_data(
delta_x, h_width, self.position_x, self.position_y - ARC_LENGTH / 2,
self.driver_pose_sins[1], self.driver_pose_diff[1], is_horizontal=True
)
# Vertical arc
v_height = abs(delta_y)
self.v_arc_data = self._calculate_arc_data(
delta_y, v_height, self.position_x - ARC_LENGTH / 2, self.position_y,
self.driver_pose_sins[0], self.driver_pose_diff[0], is_horizontal=False
)
def _calculate_arc_data(
self, delta: float, size: float, x: float, y: float, sin_val: float, diff_val: float, is_horizontal: bool
):
"""Calculate arc data and pre-compute arc points."""
if size <= 0:
return None
thickness = ARC_THICKNESS_DEFAULT + ARC_THICKNESS_EXTEND * min(1.0, diff_val * 5.0)
start_angle = (90 if sin_val > 0 else -90) if is_horizontal else (0 if sin_val > 0 else 180)
x = min(x + delta, x) if is_horizontal else x
y = y if is_horizontal else min(y + delta, y)
arc_data = ArcData(
x=x,
y=y,
width=size if is_horizontal else ARC_LENGTH,
height=ARC_LENGTH if is_horizontal else size,
thickness=thickness,
)
# Pre-calculate arc points
start_rad = np.deg2rad(start_angle)
end_rad = np.deg2rad(start_angle + 180)
angles = np.linspace(start_rad, end_rad, 37)
center_x = x + arc_data.width / 2
center_y = y + arc_data.height / 2
radius_x = arc_data.width / 2
radius_y = arc_data.height / 2
x_coords = center_x + np.cos(angles) * radius_x
y_coords = center_y + np.sin(angles) * radius_y
arc_lines = self.h_arc_lines if is_horizontal else self.v_arc_lines
for i, (x_coord, y_coord) in enumerate(zip(x_coords, y_coords, strict=True)):
arc_lines[i].x = x_coord
arc_lines[i].y = y_coord
return arc_data
Loading…
Cancel
Save