|
|
|
@ -114,8 +114,7 @@ DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_ |
|
|
|
|
resized_width, resized_height, |
|
|
|
|
mode); |
|
|
|
|
|
|
|
|
|
// new, with prerotate
|
|
|
|
|
|
|
|
|
|
// prerotate to be cache aware
|
|
|
|
|
uint8_t *resized_buf_rot = get_buffer(s->resized_buf_rot, resized_width*resized_height*3/2); |
|
|
|
|
uint8_t *resized_y_buf_rot = resized_buf_rot; |
|
|
|
|
uint8_t *resized_u_buf_rot = resized_y_buf_rot + (resized_width * resized_height); |
|
|
|
@ -127,7 +126,8 @@ DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_ |
|
|
|
|
resized_y_buf_rot, resized_height, |
|
|
|
|
resized_u_buf_rot, resized_height/2, |
|
|
|
|
resized_v_buf_rot, resized_height/2, |
|
|
|
|
resized_width, resized_height, libyuv::kRotate90); |
|
|
|
|
// negative height causes a vertical flip to match previous
|
|
|
|
|
resized_width, -resized_height, libyuv::kRotate90); |
|
|
|
|
|
|
|
|
|
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
|
|
|
|
|
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len); |
|
|
|
@ -136,13 +136,13 @@ DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_ |
|
|
|
|
for (int c = 0; c < MODEL_WIDTH/2; c++) { |
|
|
|
|
for (int r = 0; r < MODEL_HEIGHT/2; r++) { |
|
|
|
|
// Y_ul
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c*resized_height)]); |
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c)*resized_height]); |
|
|
|
|
// Y_dl
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c*resized_height)]); |
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c)*resized_height]); |
|
|
|
|
// Y_ur
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c*resized_height+1)]); |
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r) + (2*c+1)*resized_height]); |
|
|
|
|
// Y_dr
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c*resized_height+1)]); |
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(2*r+1) + (2*c+1)*resized_height]); |
|
|
|
|
// U
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf_rot[(resized_width*resized_height) + r + (c*resized_height/2)]); |
|
|
|
|
// V
|
|
|
|
@ -150,34 +150,15 @@ DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_ |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// old rotation
|
|
|
|
|
|
|
|
|
|
/*int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
|
|
|
|
|
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len); |
|
|
|
|
// one shot conversion, O(n) anyway
|
|
|
|
|
// yuvframe2tensor, normalize
|
|
|
|
|
for (int c = 0; c < MODEL_WIDTH/2; c++) { |
|
|
|
|
for (int r = 0; r < MODEL_HEIGHT/2; r++) { |
|
|
|
|
// Y_ul
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r] = input_lambda(resized_buf[(2*r*resized_width) + (2*c)]); |
|
|
|
|
// Y_ur
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width) + (2*c+1)]); |
|
|
|
|
// Y_dl
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + ((MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c)]); |
|
|
|
|
// Y_dr
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c+1)]); |
|
|
|
|
// U
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + (r*resized_width/2) + c]); |
|
|
|
|
// V
|
|
|
|
|
net_input_buf[(c*MODEL_HEIGHT/2) + r + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + (r*resized_width/2) + c]); |
|
|
|
|
} |
|
|
|
|
}*/ |
|
|
|
|
|
|
|
|
|
//printf("preprocess completed. %d \n", yuv_buf_len);
|
|
|
|
|
//FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
|
|
|
|
|
//fwrite(raw_buf, height*width*3/2, sizeof(uint8_t), dump_yuv_file);
|
|
|
|
|
//fclose(dump_yuv_file);
|
|
|
|
|
|
|
|
|
|
// *** testing ***
|
|
|
|
|
// idat = np.frombuffer(open("/tmp/inputdump.yuv", "rb").read(), np.float32).reshape(6, 160, 320)
|
|
|
|
|
// imshow(cv2.cvtColor(tensor_to_frames(idat[None]/0.0078125+128)[0], cv2.COLOR_YUV2RGB_I420))
|
|
|
|
|
|
|
|
|
|
//FILE *dump_yuv_file2 = fopen("/tmp/inputdump.yuv", "wb");
|
|
|
|
|
//fwrite(net_input_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file2);
|
|
|
|
|
//fclose(dump_yuv_file2);
|
|
|
|
|