diff --git a/poetry.lock b/poetry.lock index fd4321bde4..14fd4b94cd 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:04de7cc8e65d2c312801c6bea46a2e2778ffe21c1a60c1f8384d66306b03d485 -size 370444 +oid sha256:7616cdd0f1b405b1e867be8c62059002a1e6c7489ef213bf2b5673981614d58b +size 369979 diff --git a/pyproject.toml b/pyproject.toml index 4ceaef54ef..d9cc49bfd0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -31,7 +31,7 @@ hexdump = "*" Jinja2 = "*" json-rpc = "*" libusb1 = "*" -numpy = "~1.23" # pinned for acados +numpy = "*" onnx = ">=1.14.0" onnxruntime-gpu = { version = ">=1.15.1", platform = "linux", markers = "platform_machine == 'x86_64'" } pillow = "*" diff --git a/selfdrive/controls/lib/lateral_planner.py b/selfdrive/controls/lib/lateral_planner.py index baea407498..38258b4b5d 100644 --- a/selfdrive/controls/lib/lateral_planner.py +++ b/selfdrive/controls/lib/lateral_planner.py @@ -132,7 +132,7 @@ class LateralPlanner: lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist() lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist() - lateralPlan.curvatureRates = [float(x/self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] + lateralPlan.curvatureRates = [float(x.item() / self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0] lateralPlan.mpcSolutionValid = bool(plan_solution_valid) lateralPlan.solverExecutionTime = self.lat_mpc.solve_time diff --git a/selfdrive/locationd/paramsd.py b/selfdrive/locationd/paramsd.py index de1265f0d7..1644ceaf92 100755 --- a/selfdrive/locationd/paramsd.py +++ b/selfdrive/locationd/paramsd.py @@ -85,8 +85,8 @@ class ParamsLearner: # We observe the current stiffness and steer ratio (with a high observation noise) to bound # the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the # states in longer routes (especially straight stretches). - stiffness = float(self.kf.x[States.STIFFNESS]) - steer_ratio = float(self.kf.x[States.STEER_RATIO]) + stiffness = float(self.kf.x[States.STIFFNESS].item()) + steer_ratio = float(self.kf.x[States.STEER_RATIO].item()) self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]])) self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]])) @@ -198,14 +198,14 @@ def main(sm=None, pm=None): learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0) x = learner.kf.x - angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), + angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET].item()), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA) - angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), + angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA) - roll = clip(float(x[States.ROAD_ROLL]), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA) - roll_std = float(P[States.ROAD_ROLL]) + roll = clip(float(x[States.ROAD_ROLL].item()), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA) + roll_std = float(P[States.ROAD_ROLL].item()) # Account for the opposite signs of the yaw rates - sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE] + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD) + sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE].item() + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD) avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX) total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX) roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX) @@ -215,8 +215,8 @@ def main(sm=None, pm=None): liveParameters = msg.liveParameters liveParameters.posenetValid = True liveParameters.sensorValid = sensors_valid - liveParameters.steerRatio = float(x[States.STEER_RATIO]) - liveParameters.stiffnessFactor = float(x[States.STIFFNESS]) + liveParameters.steerRatio = float(x[States.STEER_RATIO].item()) + liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item()) liveParameters.roll = roll liveParameters.angleOffsetAverageDeg = angle_offset_average liveParameters.angleOffsetDeg = angle_offset @@ -228,10 +228,10 @@ def main(sm=None, pm=None): 0.2 <= liveParameters.stiffnessFactor <= 5.0, min_sr <= liveParameters.steerRatio <= max_sr, )) - liveParameters.steerRatioStd = float(P[States.STEER_RATIO]) - liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS]) - liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET]) - liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST]) + liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item()) + liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item()) + liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item()) + liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item()) if DEBUG: liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message() liveParameters.filterState.value = x.tolist()