|
|
|
@ -4,6 +4,7 @@ from cereal import log |
|
|
|
|
|
|
|
|
|
CAMERA_OFFSET = 0.06 # m from center car to camera |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_path_pinv(l=50): |
|
|
|
|
deg = 3 |
|
|
|
|
x = np.arange(l*1.0) |
|
|
|
@ -16,11 +17,22 @@ def model_polyfit(points, path_pinv): |
|
|
|
|
return np.dot(path_pinv, [float(x) for x in points]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width): |
|
|
|
|
def eval_poly(poly, x): |
|
|
|
|
return poly[3] + poly[2]*x + poly[1]*x**2 + poly[0]*x**3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width, v_ego): |
|
|
|
|
# This will improve behaviour when lanes suddenly widen |
|
|
|
|
# these numbers were tested on 2000segments and found to work well |
|
|
|
|
lane_width = min(4.0, lane_width) |
|
|
|
|
l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0]) |
|
|
|
|
r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0]) |
|
|
|
|
width_poly = l_poly - r_poly |
|
|
|
|
prob_mods = [] |
|
|
|
|
for t_check in [0.0, 1.5, 3.0]: |
|
|
|
|
width_at_t = eval_poly(width_poly, t_check * (v_ego + 7)) |
|
|
|
|
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0])) |
|
|
|
|
mod = min(prob_mods) |
|
|
|
|
l_prob = mod * l_prob |
|
|
|
|
r_prob = mod * r_prob |
|
|
|
|
|
|
|
|
|
path_from_left_lane = l_poly.copy() |
|
|
|
|
path_from_left_lane[3] -= lane_width / 2.0 |
|
|
|
@ -82,7 +94,7 @@ class LanePlanner(): |
|
|
|
|
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \ |
|
|
|
|
(1 - self.lane_width_certainty) * speed_lane_width |
|
|
|
|
|
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width) |
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width, v_ego) |
|
|
|
|
|
|
|
|
|
def update(self, v_ego, md): |
|
|
|
|
self.parse_model(md) |
|
|
|
|