pull/30209/head
Yassine 2 years ago
commit f2707ee02f
  1. 10
      .github/pull_request_template.md
  2. 2
      .github/workflows/badges.yaml
  3. 62
      .github/workflows/docs.yaml
  4. 2
      .github/workflows/labeler.yaml
  5. 2
      .github/workflows/prebuilt.yaml
  6. 2
      .github/workflows/release.yaml
  7. 2
      .github/workflows/repo-maintenance.yaml
  8. 26
      .github/workflows/selfdrive_tests.yaml
  9. 24
      .github/workflows/tools_tests.yaml
  10. 1
      .gitignore
  11. 4
      .pre-commit-config.yaml
  12. 4
      Jenkinsfile
  13. 2
      cereal
  14. 4
      docs/CARS.md
  15. 42
      docs/docker/Dockerfile
  16. 15
      docs/docker/nginx.conf
  17. 2
      panda
  18. 1243
      poetry.lock
  19. 4
      pyproject.toml
  20. 18
      release/files_common
  21. 2
      selfdrive/car/chrysler/interface.py
  22. 1
      selfdrive/car/chrysler/values.py
  23. 14
      selfdrive/car/hyundai/values.py
  24. 3
      selfdrive/car/subaru/values.py
  25. 7
      selfdrive/car/toyota/carstate.py
  26. 9
      selfdrive/car/toyota/values.py
  27. 2
      selfdrive/car/volkswagen/values.py
  28. 36
      selfdrive/controls/controlsd.py
  29. 4
      selfdrive/controls/lib/drive_helpers.py
  30. 18
      selfdrive/controls/lib/events.py
  31. 6
      selfdrive/controls/lib/lateral_mpc_lib/lat_mpc.py
  32. 12
      selfdrive/controls/lib/longcontrol.py
  33. 16
      selfdrive/controls/lib/longitudinal_planner.py
  34. 21
      selfdrive/controls/plannerd.py
  35. 50
      selfdrive/locationd/helpers.py
  36. 5
      selfdrive/locationd/laikad.py
  37. 8
      selfdrive/locationd/paramsd.py
  38. 60
      selfdrive/locationd/torqued.py
  39. 12
      selfdrive/modeld/SConscript
  40. 77
      selfdrive/modeld/constants.py
  41. 186
      selfdrive/modeld/fill_model_msg.py
  42. 29
      selfdrive/modeld/get_model_metadata.py
  43. 87
      selfdrive/modeld/modeld.py
  44. 6
      selfdrive/modeld/models/README.md
  45. 358
      selfdrive/modeld/models/driving.cc
  46. 273
      selfdrive/modeld/models/driving.h
  47. 26
      selfdrive/modeld/models/driving.pxd
  48. 54
      selfdrive/modeld/models/driving_pyx.pyx
  49. 8
      selfdrive/modeld/navmodeld.py
  50. 101
      selfdrive/modeld/parse_model_outputs.py
  51. 32
      selfdrive/modeld/thneed/lib.py
  52. 13
      selfdrive/monitoring/dmonitoringd.py
  53. 8
      selfdrive/navd/navd.py
  54. 3
      selfdrive/test/docker_common.sh
  55. 8
      selfdrive/test/longitudinal_maneuvers/plant.py
  56. 4
      selfdrive/test/process_replay/README.md
  57. 70
      selfdrive/test/process_replay/compare_logs.py
  58. 8
      selfdrive/test/process_replay/model_replay.py
  59. 2
      selfdrive/test/process_replay/model_replay_ref_commit
  60. 15
      selfdrive/test/process_replay/process_replay.py
  61. 4
      selfdrive/test/process_replay/regen.py
  62. 8
      selfdrive/test/process_replay/test_processes.py
  63. 26
      selfdrive/test/test_onroad.py
  64. 1
      selfdrive/ui/soundd/soundd
  65. 1
      selfdrive/ui/spinner
  66. 1
      selfdrive/ui/text
  67. 1
      selfdrive/ui/ui
  68. 2
      selfdrive/ui/ui.h
  69. 115
      system/hardware/tici/esim.py
  70. 2
      system/hardware/tici/tests/test_power_draw.py
  71. 3
      system/loggerd/logger.cc
  72. 11
      system/micd.py
  73. 2
      system/sensord/.gitignore
  74. 2
      system/sensord/SConscript
  75. 4
      system/sensord/sensord
  76. 2
      system/sensord/tests/test_sensord.py
  77. 2
      tinygrad_repo
  78. 1
      tools/cabana/binaryview.cc
  79. 7
      tools/cabana/chart/chartswidget.cc
  80. 1
      tools/cabana/chart/chartswidget.h
  81. 6
      tools/cabana/detailwidget.cc
  82. 16
      tools/cabana/videowidget.cc
  83. 6
      tools/cabana/videowidget.h
  84. 4
      tools/install_python_dependencies.sh
  85. 51
      tools/lib/framereader.py
  86. 7
      tools/lib/logreader.py
  87. 4
      tools/replay/ui.py
  88. 1
      tools/sim/Dockerfile.sim

@ -1,5 +1,15 @@
<!-- Please copy and paste the relevant template -->
<!--- ***** Template: Fingerprint *****
**Car**
Which car (make, model, year) this fingerprint is for
**Route**
A route with the fingerprint
-->
<!--- ***** Template: Car bug fix *****
**Description** [](A description of the bug and the fix. Also link any relevant issues.)

@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-20.04
if: github.repository == 'commaai/openpilot'
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry

@ -0,0 +1,62 @@
name: docs
on:
push:
branches:
- master
pull_request:
concurrency:
group: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' && github.run_id || github.head_ref || github.ref }}-${{ github.workflow }}-${{ github.event_name }}
cancel-in-progress: true
env:
BASE_IMAGE: openpilot-base
BUILD: selfdrive/test/docker_build.sh base
RUN: docker run --shm-size 1G -v $GITHUB_WORKSPACE:/tmp/openpilot -w /tmp/openpilot -e FILEREADER_CACHE=1 -e PYTHONPATH=/tmp/openpilot -e NUM_JOBS -e JOB_ID -e GITHUB_ACTION -e GITHUB_REF -e GITHUB_HEAD_REF -e GITHUB_SHA -e GITHUB_REPOSITORY -e GITHUB_RUN_ID -v $GITHUB_WORKSPACE/.ci_cache/scons_cache:/tmp/scons_cache -v $GITHUB_WORKSPACE/.ci_cache/comma_download_cache:/tmp/comma_download_cache -v $GITHUB_WORKSPACE/.ci_cache/openpilot_cache:/tmp/openpilot_cache $BASE_IMAGE /bin/sh -c
jobs:
docs:
name: build docs
runs-on: ubuntu-20.04
timeout-minutes: 45
steps:
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
- name: Build openpilot
run: |
${{ env.RUN }} "scons -j$(nproc)"
- name: Build docs
run: |
${{ env.RUN }} "apt update && apt install -y doxygen && cd docs && make html"
- uses: actions/checkout@v4
if: github.ref == 'refs/heads/master' && github.repository == 'commaai/openpilot'
with:
path: openpilot-docs
ssh-key: ${{ secrets.OPENPILOT_DOCS_KEY }}
repository: commaai/openpilot-docs
- name: Push
if: github.ref == 'refs/heads/master' && github.repository == 'commaai/openpilot'
run: |
set -x
source release/identity.sh
cd openpilot-docs
git checkout --orphan tmp
git rm -rf --cached .
cp -r ../build/docs/html/ docs/
touch docs/.nojekyll
git add -f .
git commit -m "build docs"
# docs live in different repo to not bloat openpilot's full clone size
git push -f origin gh-pages

@ -9,7 +9,7 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: false
- uses: actions/labeler@v5.0.0-alpha.1

@ -24,7 +24,7 @@ jobs:
wait-interval: 30
running-workflow-name: 'build prebuilt'
check-regexp: ^((?!.*(build master-ci).*).)*$
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- run: git lfs pull

@ -27,7 +27,7 @@ jobs:
wait-interval: 30
running-workflow-name: 'build master-ci'
check-regexp: ^((?!.*(build prebuilt).*).)*$
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
fetch-depth: 0

@ -12,7 +12,7 @@ jobs:
container:
image: ghcr.io/commaai/openpilot-base:latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: poetry lock
run: |
pip install poetry

@ -35,7 +35,7 @@ jobs:
env:
STRIPPED_DIR: /tmp/releasepilot
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- run: git lfs pull
@ -77,7 +77,7 @@ jobs:
(github.event.pull_request.head.repo.full_name == 'commaai/openpilot'))) && '["x86_64", "aarch64"]' || '["x86_64"]' ) }}
runs-on: ${{ (matrix.arch == 'aarch64') && 'buildjet-2vcpu-ubuntu-2204-arm' || 'ubuntu-20.04' }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -97,7 +97,7 @@ jobs:
runs-on: ${{ (matrix.arch == 'aarch64') && 'buildjet-2vcpu-ubuntu-2204-arm' || 'ubuntu-20.04' }}
if: github.ref == 'refs/heads/master' && github.event_name != 'pull_request' && github.repository == 'commaai/openpilot'
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- name: Setup to push to repo
@ -120,7 +120,7 @@ jobs:
if: github.ref == 'refs/heads/master' && github.event_name != 'pull_request' && github.repository == 'commaai/openpilot'
needs: [docker_push]
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: false
- name: Setup docker
@ -135,7 +135,7 @@ jobs:
name: static analysis
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -147,7 +147,7 @@ jobs:
name: valgrind
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -165,7 +165,7 @@ jobs:
name: unit tests
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -190,7 +190,7 @@ jobs:
((github.event_name != 'pull_request') ||
(github.event.pull_request.head.repo.full_name == 'commaai/openpilot'))) && 'buildjet-8vcpu-ubuntu-2004' || 'ubuntu-20.04' }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -232,7 +232,7 @@ jobs:
name: regen
runs-on: 'ubuntu-20.04'
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -259,7 +259,7 @@ jobs:
name: model tests
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -295,7 +295,7 @@ jobs:
matrix:
job: [0, 1, 2, 3, 4]
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -323,7 +323,7 @@ jobs:
runs-on: ubuntu-20.04
if: github.event_name == 'pull_request'
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
ref: ${{ github.event.pull_request.base.ref }}
@ -333,7 +333,7 @@ jobs:
run: |
${{ env.RUN }} "scons -j$(nproc) && python selfdrive/debug/dump_car_info.py --path /tmp/openpilot_cache/base_car_info"
sudo chown -R $USER:$USER ${{ github.workspace }}
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
path: current

@ -30,7 +30,7 @@ jobs:
runs-on: ubuntu-20.04
timeout-minutes: 45
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -48,7 +48,7 @@ jobs:
if: github.repository == 'commaai/openpilot'
timeout-minutes: 45
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
@ -63,29 +63,11 @@ jobs:
run: |
selfdrive/test/docker_build.sh sim
docs:
name: build docs
runs-on: ubuntu-20.04
timeout-minutes: 45
steps:
- uses: actions/checkout@v3
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry
- name: Setup to push to repo
if: github.ref == 'refs/heads/master' && github.event_name != 'pull_request' && github.repository == 'commaai/openpilot'
run: |
echo "PUSH_IMAGE=true" >> "$GITHUB_ENV"
$DOCKER_LOGIN
- name: Build and push docs image
run: |
selfdrive/test/docker_build.sh docs
devcontainer:
name: devcontainer
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: true
- uses: ./.github/workflows/setup-with-retry

1
.gitignore vendored

@ -79,6 +79,7 @@ comma*.sh
selfdrive/modeld/thneed/compile
selfdrive/modeld/models/*.thneed
selfdrive/modeld/models/*.pkl
*.bz2

@ -5,7 +5,7 @@ repos:
- id: check-hooks-apply
- id: check-useless-excludes
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
rev: v4.5.0
hooks:
- id: check-ast
exclude: '^(third_party)/'
@ -41,7 +41,7 @@ repos:
args: ['--explicit-package-bases']
exclude: '^(third_party/)|(cereal/)|(opendbc/)|(panda/)|(laika/)|(laika_repo/)|(rednose/)|(rednose_repo/)|(tinygrad/)|(tinygrad_repo/)|(xx/)'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.0.292
rev: v0.1.0
hooks:
- id: ruff
exclude: '^(third_party/)|(cereal/)|(rednose/)|(panda/)|(laika/)|(laika_repo/)|(rednose_repo/)|(tinygrad/)|(tinygrad_repo/)'

4
Jenkinsfile vendored

@ -21,6 +21,8 @@ source ~/.bash_profile
if [ -f /TICI ]; then
source /etc/profile
rm -rf ~/.commacache
if ! systemctl is-active --quiet systemd-resolved; then
echo "restarting resolved"
sudo systemctl start systemd-resolved
@ -154,7 +156,7 @@ node {
["build master-ci", "cd $SOURCE_DIR/release && TARGET_DIR=$TEST_DIR ./build_devel.sh"],
["build openpilot", "cd selfdrive/manager && ./build.py"],
["check dirty", "release/check-dirty.sh"],
["onroad tests", "cd selfdrive/test/ && ./test_onroad.py"],
["onroad tests", "pytest selfdrive/test/test_onroad.py -s"],
["time to onroad", "cd selfdrive/test/ && pytest test_time_to_onroad.py"],
])
},

@ -1 +1 @@
Subproject commit bcdbfcfdeb4bf59eae484e9b2c726c8b41c87350
Subproject commit 5dcf486c57f2e75cd6e50d2adda02bf776d51c8f

@ -120,7 +120,7 @@ A supported vehicle is one that just works when you install a comma device. All
|Kia|EV6 (without HDA II) 2022-23[<sup>6</sup>](#footnotes)|Highway Driving Assist|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai L connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=EV6 (without HDA II) 2022-23">Buy Here</a></sub></details>||
|Kia|Forte 2019-21|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai G connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Forte 2019-21">Buy Here</a></sub></details>||
|Kia|Forte 2023|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai E connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Forte 2023">Buy Here</a></sub></details>||
|Kia|K5 2021-22|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=K5 2021-22">Buy Here</a></sub></details>||
|Kia|K5 2021-24|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=K5 2021-24">Buy Here</a></sub></details>||
|Kia|K5 Hybrid 2020-22|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=K5 Hybrid 2020-22">Buy Here</a></sub></details>||
|Kia|K8 Hybrid (with HDA II) 2023[<sup>6</sup>](#footnotes)|Highway Driving Assist II|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai Q connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=K8 Hybrid (with HDA II) 2023">Buy Here</a></sub></details>||
|Kia|Niro EV 2019|All|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai H connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Niro EV 2019">Buy Here</a></sub></details>|<a href="https://www.youtube.com/watch?v=lT7zcG6ZpGo" target="_blank"><img height="18px" src="assets/icon-youtube.svg"></img></a>|
@ -139,7 +139,7 @@ A supported vehicle is one that just works when you install a comma device. All
|Kia|Sorento 2018|Advanced Smart Cruise Control & LKAS|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai E connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento 2018">Buy Here</a></sub></details>|<a href="https://www.youtube.com/watch?v=Fkh3s6WHJz8" target="_blank"><img height="18px" src="assets/icon-youtube.svg"></img></a>|
|Kia|Sorento 2019|Smart Cruise Control (SCC)|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai E connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento 2019">Buy Here</a></sub></details>|<a href="https://www.youtube.com/watch?v=Fkh3s6WHJz8" target="_blank"><img height="18px" src="assets/icon-youtube.svg"></img></a>|
|Kia|Sorento 2021-23[<sup>6</sup>](#footnotes)|Smart Cruise Control (SCC)|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai K connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento 2021-23">Buy Here</a></sub></details>||
|Kia|Sorento Hybrid 2023[<sup>6</sup>](#footnotes)|All|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento Hybrid 2023">Buy Here</a></sub></details>||
|Kia|Sorento Hybrid 2021-23[<sup>6</sup>](#footnotes)|All|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento Hybrid 2021-23">Buy Here</a></sub></details>||
|Kia|Sorento Plug-in Hybrid 2022-23[<sup>6</sup>](#footnotes)|All|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai A connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sorento Plug-in Hybrid 2022-23">Buy Here</a></sub></details>||
|Kia|Sportage 2023[<sup>6</sup>](#footnotes)|Smart Cruise Control (SCC)|Stock|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai N connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sportage 2023">Buy Here</a></sub></details>||
|Kia|Sportage Hybrid 2023[<sup>6</sup>](#footnotes)|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[![star](assets/icon-star-full.svg)](##)|[![star](assets/icon-star-full.svg)](##)|<details><summary>Parts</summary><sub>- 1 Hyundai N connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Kia&model=Sportage Hybrid 2023">Buy Here</a></sub></details>||

@ -1,42 +0,0 @@
FROM ghcr.io/commaai/openpilot-base:latest
ENV PYTHONUNBUFFERED 1
ENV OPENPILOT_PATH /tmp/openpilot
ENV PYTHONPATH ${OPENPILOT_PATH}:${PYTHONPATH}
ENV POETRY_VIRUALENVS_CREATE false
RUN mkdir -p ${OPENPILOT_PATH}
WORKDIR ${OPENPILOT_PATH}
COPY SConstruct ${OPENPILOT_PATH}
COPY ./openpilot ${OPENPILOT_PATH}/openpilot
COPY ./body ${OPENPILOT_PATH}/body
COPY ./third_party ${OPENPILOT_PATH}/third_party
COPY ./site_scons ${OPENPILOT_PATH}/site_scons
COPY ./laika_repo ${OPENPILOT_PATH}/laika_repo
RUN ln -s ${OPENPILOT_PATH}/laika_repo/laika/ ${OPENPILOT_PATH}/laika
COPY ./rednose ${OPENPILOT_PATH}/rednose
COPY ./rednose_repo ${OPENPILOT_PATH}/rednose_repo
COPY ./tools ${OPENPILOT_PATH}/tools
COPY ./release ${OPENPILOT_PATH}/release
COPY ./common ${OPENPILOT_PATH}/common
COPY ./opendbc ${OPENPILOT_PATH}/opendbc
COPY ./cereal ${OPENPILOT_PATH}/cereal
COPY ./panda ${OPENPILOT_PATH}/panda
COPY ./selfdrive ${OPENPILOT_PATH}/selfdrive
COPY ./system ${OPENPILOT_PATH}/system
COPY ./*.md ${OPENPILOT_PATH}/
RUN --mount=type=bind,source=.ci_cache/scons_cache,target=/tmp/scons_cache,rw scons -j$(nproc) --cache-readonly
RUN apt update && apt install doxygen -y
COPY ./docs ${OPENPILOT_PATH}/docs
RUN git init .
WORKDIR ${OPENPILOT_PATH}/docs
RUN make html
FROM nginx:1.21
COPY --from=0 /tmp/openpilot/build/docs/html /usr/share/nginx/html
COPY ./docs/docker/nginx.conf /etc/nginx/conf.d/default.conf

@ -1,15 +0,0 @@
server {
listen 80;
listen [::]:80;
server_name localhost;
gzip on;
gzip_types text/html text/plain text/css text/xml text/javascript application/javascript application/x-javascript;
gzip_min_length 1024;
gzip_vary on;
root /usr/share/nginx/html;
location / {
try_files $uri $uri/ /index.html;
}
}

@ -1 +1 @@
Subproject commit 6bf6ba773ea4174c702ac9c4af4e8a6fd3cef655
Subproject commit 549fa32fc7b0354ebbb48bae846bff380eab9446

1243
poetry.lock generated

File diff suppressed because it is too large Load Diff

@ -162,7 +162,9 @@ types-pycurl = "*"
types-PyYAML = "*"
types-requests = "*"
types-tabulate = "*"
pyqt5 = { version = "*", markers = "platform_machine == 'x86_64'" } # no aarch64 wheels for macOS/linux
# this is only pinned since 5.15.11 is broken
pyqt5 = { version = "==5.15.2", markers = "platform_machine == 'x86_64'" } # no aarch64 wheels for macOS/linux
[tool.poetry.group.carla]
optional = true

@ -246,6 +246,7 @@ selfdrive/locationd/models/gnss_helpers.py
selfdrive/locationd/torqued.py
selfdrive/locationd/calibrationd.py
selfdrive/locationd/helpers.py
system/logcatd/.gitignore
system/logcatd/SConscript
@ -284,7 +285,6 @@ system/sensord/SConscript
system/sensord/sensors_qcom2.cc
system/sensord/sensors/*.cc
system/sensord/sensors/*.h
system/sensord/sensord
system/sensord/pigeond.py
selfdrive/thermald/thermald.py
@ -358,6 +358,9 @@ selfdrive/modeld/.gitignore
selfdrive/modeld/__init__.py
selfdrive/modeld/SConscript
selfdrive/modeld/modeld.py
selfdrive/modeld/parse_model_outputs.py
selfdrive/modeld/fill_model_msg.py
selfdrive/modeld/get_model_metadata.py
selfdrive/modeld/navmodeld.py
selfdrive/modeld/dmonitoringmodeld.py
selfdrive/modeld/constants.py
@ -370,8 +373,6 @@ selfdrive/modeld/models/*.pyx
selfdrive/modeld/models/commonmodel.cc
selfdrive/modeld/models/commonmodel.h
selfdrive/modeld/models/driving.cc
selfdrive/modeld/models/driving.h
selfdrive/modeld/models/supercombo.onnx
selfdrive/modeld/models/dmonitoring_model_q.dlc
@ -591,9 +592,16 @@ tinygrad_repo/extra/onnx.py
tinygrad_repo/extra/onnx_ops.py
tinygrad_repo/extra/thneed.py
tinygrad_repo/extra/utils.py
tinygrad_repo/tinygrad/codegen/ast.py
tinygrad_repo/tinygrad/codegen/gpu.py
tinygrad_repo/tinygrad/codegen/kernel.py
tinygrad_repo/tinygrad/codegen/linearizer.py
tinygrad_repo/tinygrad/codegen/optimizer.py
tinygrad_repo/tinygrad/features/image.py
tinygrad_repo/tinygrad/nn/*
tinygrad_repo/tinygrad/renderer/cstyle.py
tinygrad_repo/tinygrad/renderer/opencl.py
tinygrad_repo/tinygrad/runtime/lib.py
tinygrad_repo/tinygrad/runtime/ops_cpu.py
tinygrad_repo/tinygrad/runtime/ops_disk.py
tinygrad_repo/tinygrad/runtime/ops_gpu.py
tinygrad_repo/tinygrad/shape/*
tinygrad_repo/tinygrad/*.py

@ -64,7 +64,7 @@ class CarInterface(CarInterfaceBase):
ret.mass = 2493.
ret.minSteerSpeed = 14.5
# Older EPS FW allow steer to zero
if any(fw.ecu == 'eps' and fw.fwVersion[:4] <= b"6831" for fw in car_fw):
if any(fw.ecu == 'eps' and b"68" < fw.fwVersion[:4] <= b"6831" for fw in car_fw):
ret.minSteerSpeed = 0.
elif candidate == CAR.RAM_HD:

@ -272,6 +272,7 @@ FW_VERSIONS = {
],
(Ecu.eps, 0x75A, None): [
b'21590101AA',
b'21590101AB',
b'68273275AF',
b'68273275AG',
b'68273275AH',

@ -225,7 +225,7 @@ CAR_INFO: Dict[str, Optional[Union[HyundaiCarInfo, List[HyundaiCarInfo]]]] = {
HyundaiCarInfo("Kia Forte 2019-21", car_parts=CarParts.common([CarHarness.hyundai_g])),
HyundaiCarInfo("Kia Forte 2023", car_parts=CarParts.common([CarHarness.hyundai_e])),
],
CAR.KIA_K5_2021: HyundaiCarInfo("Kia K5 2021-22", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_K5_2021: HyundaiCarInfo("Kia K5 2021-24", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_K5_HEV_2020: HyundaiCarInfo("Kia K5 Hybrid 2020-22", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_K8_HEV_1ST_GEN: HyundaiCarInfo("Kia K8 Hybrid (with HDA II) 2023", "Highway Driving Assist II", car_parts=CarParts.common([CarHarness.hyundai_q])),
CAR.KIA_NIRO_EV: [
@ -257,7 +257,7 @@ CAR_INFO: Dict[str, Optional[Union[HyundaiCarInfo, List[HyundaiCarInfo]]]] = {
HyundaiCarInfo("Kia Sorento 2019", video_link="https://www.youtube.com/watch?v=Fkh3s6WHJz8", car_parts=CarParts.common([CarHarness.hyundai_e])),
],
CAR.KIA_SORENTO_4TH_GEN: HyundaiCarInfo("Kia Sorento 2021-23", car_parts=CarParts.common([CarHarness.hyundai_k])),
CAR.KIA_SORENTO_HEV_4TH_GEN: HyundaiCarInfo("Kia Sorento Hybrid 2023", "All", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_SORENTO_HEV_4TH_GEN: HyundaiCarInfo("Kia Sorento Hybrid 2021-23", "All", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_SORENTO_PHEV_4TH_GEN: HyundaiCarInfo("Kia Sorento Plug-in Hybrid 2022-23", "All", car_parts=CarParts.common([CarHarness.hyundai_a])),
CAR.KIA_SPORTAGE_HYBRID_5TH_GEN: HyundaiCarInfo("Kia Sportage Hybrid 2023", car_parts=CarParts.common([CarHarness.hyundai_n])),
CAR.KIA_STINGER: HyundaiCarInfo("Kia Stinger 2018-20", video_link="https://www.youtube.com/watch?v=MJ94qoofYw0",
@ -1407,6 +1407,7 @@ FW_VERSIONS = {
b'\xf1\x8799110L2100\xf1\x00DL3_ SCC FHCUP 1.00 1.03 99110-L2100 ',
b'\xf1\x00DL3_ SCC F-CUP 1.00 1.03 99110-L2100 ',
b'\xf1\x00DL3_ SCC FHCUP 1.00 1.03 99110-L2100 ',
b'\xf1\x00DL3_ SCC FHCUP 1.00 1.04 99110-L2100 ',
],
(Ecu.eps, 0x7D4, None): [
b'\xf1\x8756310-L3110\xf1\000DL3 MDPS C 1.00 1.01 56310-L3110 4DLAC101',
@ -1414,11 +1415,13 @@ FW_VERSIONS = {
b'\xf1\x8757700-L3000\xf1\x00DL3 MDPS R 1.00 1.02 57700-L3000 4DLAP102',
b'\xf1\x00DL3 MDPS C 1.00 1.01 56310-L3220 4DLAC101',
b'\xf1\x00DL3 MDPS C 1.00 1.02 56310-L2220 4DLDC102',
b'\xf1\x00DL3 MDPS C 1.00 1.02 56310L3220\x00 4DLAC102',
],
(Ecu.fwdCamera, 0x7C4, None): [
b'\xf1\x00DL3 MFC AT USA LHD 1.00 1.03 99210-L3000 200915',
b'\xf1\x00DL3 MFC AT USA LHD 1.00 1.04 99210-L3000 210208',
b'\xf1\x00DL3 MFC AT KOR LHD 1.00 1.04 99210-L2000 210527',
b'\xf1\x00DL3 MFC AT USA LHD 1.00 1.05 99210-L3000 211222',
],
(Ecu.abs, 0x7D1, None): [
b'\xf1\000DL ESC \006 101 \004\002 58910-L3200',
@ -1427,12 +1430,14 @@ FW_VERSIONS = {
b'\xf1\x8758910-L3600\xf1\x00DL ESC \x03 100 \x08\x02 58910-L3600',
b'\xf1\x00DL ESC \t 100 \x06\x02 58910-L3800',
b'\xf1\x00DL ESC \x01 104 \x07\x12 58910-L2200',
b'\xf1\x00DL ESC \x06 103"\x08\x06 58910-L3200',
],
(Ecu.engine, 0x7E0, None): [
b'\xf1\x87391212MKT0',
b'\xf1\x87391212MKV0',
b'\xf1\x870\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\x82DLDWN5TMDCXXXJ1B',
b'\xf1\x81HM6M2_0a0_DQ0',
b'\xf1\x87391212MKT3',
],
(Ecu.transmission, 0x7E1, None): [
b'\xf1\000bcsh8p54 U913\000\000\000\000\000\000TDL2T16NB1ia\v\xb8',
@ -1442,6 +1447,7 @@ FW_VERSIONS = {
b'\xf1\x87954A02N300\x00\x00\x00\x00\x00\xf1\x81T02730A1 \xf1\x00T02601BL T02730A1 WDL3T25XXX730NS2b\x1f\xb8%',
b'\xf1\x00bcsh8p54 U913\x00\x00\x00\x00\x00\x00TDL4T16NB05\x94t\x18',
b'\xf1\x00HT6TA261BLHT6TAB00A1SDL0C20KS0\x00\x00\x00\x00\x00\x00\\\x9f\xa5\x15',
b'\xf1\x00bcsh8p54 U913\x00\x00\x00\x00\x00\x00TDL2T16NB2.\x13\xf6\xed',
],
},
CAR.KIA_K5_HEV_2020: {
@ -1498,6 +1504,7 @@ FW_VERSIONS = {
b'\xf1\x8758520-K4010\xf1\x00OS IEB \x03 101 \x11\x13 58520-K4010',
b'\xf1\x00OS IEB \r 102"\x05\x16 58520-K4010',
b'\xf1\x00OS IEB \x02 102"\x05\x16 58520-K4010',
b'\xf1\x00OS IEB \x03 102"\x05\x16 58520-K4010',
],
(Ecu.fwdCamera, 0x7C4, None): [
b'\xf1\x00OSP LKA AT CND LHD 1.00 1.02 99211-J9110 802',
@ -1511,6 +1518,7 @@ FW_VERSIONS = {
b'\xf1\x00OSP MDPS C 1.00 1.02 56310K4260\x00 4OEPC102',
b'\xf1\x00OSP MDPS C 1.00 1.02 56310/K4970 4OEPC102',
b'\xf1\x00OSP MDPS C 1.00 1.02 56310/K4271 4OEPC102',
b'\xf1\x00OSP MDPS C 1.00 1.02 56310-K4271 4OEPC102',
b'\xf1\x00OSP MDPS C 1.00 1.02 56310K4971\x00 4OEPC102',
b'\xf1\x00OSP MDPS C 1.00 1.02 56310K4261\x00 4OEPC102',
],
@ -2031,9 +2039,11 @@ FW_VERSIONS = {
(Ecu.fwdCamera, 0x7c4, None): [
b'\xf1\x00MQ4HMFC AT KOR LHD 1.00 1.12 99210-P2000 230331',
b'\xf1\x00MQ4HMFC AT USA LHD 1.00 1.11 99210-P2000 211217',
b'\xf1\x00MQ4HMFC AT KOR LHD 1.00 1.04 99210-P2000 200330',
],
(Ecu.fwdRadar, 0x7d0, None): [
b'\xf1\x00MQhe SCC FHCUP 1.00 1.07 99110-P4000 ',
b'\xf1\x00MQhe SCC FHCUP 1.00 1.04 99110-P4000 ',
],
},
CAR.KIA_K8_HEV_1ST_GEN: {

@ -324,6 +324,7 @@ FW_VERSIONS = {
b'\x00\x00eq\x1f@ "',
b'\x00\x00eq\x00\x00\x00\x00',
b'\x00\x00e\x8f\x00\x00\x00\x00',
b'\x00\x00e\x92\x00\x00\x00\x00',
b'\x00\x00e\xa4\x00\x00\x00\x00',
],
(Ecu.engine, 0x7e0, None): [
@ -332,6 +333,7 @@ FW_VERSIONS = {
b'\xca!`0\a',
b'\xcc\"f0\a',
b'\xcc!fp\a',
b'\xcc!`p\x07',
b'\xca!f@\x07',
b'\xca!fp\x07',
b'\xf3"f@\x07',
@ -344,6 +346,7 @@ FW_VERSIONS = {
(Ecu.transmission, 0x7e1, None): [
b'\xe6\xf5\004\000\000',
b'\xe6\xf5$\000\000',
b'\xe7\xf5\x04\x00\x00',
b'\xe7\xf6B0\000',
b'\xe7\xf5D0\000',
b'\xf1\x00\xd7\x10@',

@ -74,6 +74,7 @@ class CarState(CarStateBase):
ret.standstill = ret.vEgoRaw == 0
ret.steeringAngleDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_ANGLE"] + cp.vl["STEER_ANGLE_SENSOR"]["STEER_FRACTION"]
ret.steeringRateDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_RATE"]
torque_sensor_angle_deg = cp.vl["STEER_TORQUE_SENSOR"]["STEER_ANGLE"]
# On some cars, the angle measurement is non-zero while initializing
@ -81,16 +82,14 @@ class CarState(CarStateBase):
self.accurate_steer_angle_seen = True
if self.accurate_steer_angle_seen:
# Offset seems to be invalid for large steering angles
if abs(ret.steeringAngleDeg) < 90 and cp.can_valid:
# Offset seems to be invalid for large steering angles and high angle rates
if abs(ret.steeringAngleDeg) < 90 and abs(ret.steeringRateDeg) < 100 and cp.can_valid:
self.angle_offset.update(torque_sensor_angle_deg - ret.steeringAngleDeg)
if self.angle_offset.initialized:
ret.steeringAngleOffsetDeg = self.angle_offset.x
ret.steeringAngleDeg = torque_sensor_angle_deg - self.angle_offset.x
ret.steeringRateDeg = cp.vl["STEER_ANGLE_SENSOR"]["STEER_RATE"]
can_gear = int(cp.vl["GEAR_PACKET"]["GEAR"])
ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(can_gear, None))
ret.leftBlinker = cp.vl["BLINKERS_STATE"]["TURN_SIGNALS"] == 1

@ -346,7 +346,7 @@ FW_CHUNK_LEN = 16
PLATFORM_CODE_ECUS = [Ecu.fwdCamera, Ecu.abs, Ecu.eps]
# These platforms have at least one platform code for all ECUs shared with another platform.
FUZZY_EXCLUDED_PLATFORMS = {CAR.LEXUS_ES_TSS2, CAR.LEXUS_RX_TSS2}
FUZZY_EXCLUDED_PLATFORMS: set[CAR] = set()
# Some ECUs that use KWP2000 have their FW versions on non-standard data identifiers.
# Toyota diagnostic software first gets the supported data ids, then queries them one by one.
@ -1005,6 +1005,7 @@ FW_VERSIONS = {
b'\x0230A10000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00',
b'\x0230A11000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00',
b'\x0230ZN4000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00',
b'\x0230ZN5000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00',
b'\x03312K7000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00',
b'\x03312M3000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203402\x00\x00\x00\x00',
b'\x03312N6000\x00\x00\x00\x00\x00\x00\x00\x00A0202000\x00\x00\x00\x00\x00\x00\x00\x00895231203202\x00\x00\x00\x00',
@ -1060,6 +1061,7 @@ FW_VERSIONS = {
b'\x01F152612B91\x00\x00\x00\x00\x00\x00',
b'\x01F15260A070\x00\x00\x00\x00\x00\x00',
b'\x01F152676250\x00\x00\x00\x00\x00\x00',
b'\x01F152602470\x00\x00\x00\x00\x00\x00',
b'F152612590\x00\x00\x00\x00\x00\x00',
b'F152612691\x00\x00\x00\x00\x00\x00',
b'F152612692\x00\x00\x00\x00\x00\x00',
@ -1782,7 +1784,6 @@ FW_VERSIONS = {
CAR.LEXUS_ES_TSS2: {
(Ecu.engine, 0x700, None): [
b'\x018966306U6000\x00\x00\x00\x00',
b'\x01896630EC9100\x00\x00\x00\x00',
b'\x018966333T5000\x00\x00\x00\x00',
b'\x018966333T5100\x00\x00\x00\x00',
b'\x018966333X6000\x00\x00\x00\x00',
@ -1800,7 +1801,6 @@ FW_VERSIONS = {
b'\x01F152606281\x00\x00\x00\x00\x00\x00',
b'\x01F152606340\x00\x00\x00\x00\x00\x00',
b'\x01F152606461\x00\x00\x00\x00\x00\x00',
b'\x01F15260E031\x00\x00\x00\x00\x00\x00',
b'\x01F15260646200\x00\x00\x00\x00',
b'F152633423\x00\x00\x00\x00\x00\x00',
b'F152633680\x00\x00\x00\x00\x00\x00',
@ -1813,7 +1813,6 @@ FW_VERSIONS = {
b'8965B33590\x00\x00\x00\x00\x00\x00',
b'8965B33690\x00\x00\x00\x00\x00\x00',
b'8965B33721\x00\x00\x00\x00\x00\x00',
b'8965B48271\x00\x00\x00\x00\x00\x00',
],
(Ecu.fwdRadar, 0x750, 0xf): [
b'\x018821F3301100\x00\x00\x00\x00',
@ -1829,7 +1828,6 @@ FW_VERSIONS = {
b'\x028646F3304100\x00\x00\x00\x008646G2601200\x00\x00\x00\x00',
b'\x028646F3304300\x00\x00\x00\x008646G2601500\x00\x00\x00\x00',
b'\x028646F3309100\x00\x00\x00\x008646G3304000\x00\x00\x00\x00',
b'\x028646F4810200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00',
b'\x028646F0610000\x00\x00\x00\x008646G3304000\x00\x00\x00\x00',
b'\x028646F3303100\x00\x00\x00\x008646G26011A0\x00\x00\x00\x00',
b'\x028646F3304200\x00\x00\x00\x008646G2601400\x00\x00\x00\x00',
@ -2084,6 +2082,7 @@ FW_VERSIONS = {
b'\x01896630EA9000\x00\x00\x00\x00',
b'\x01896630EB0000\x00\x00\x00\x00',
b'\x01896630EC9000\x00\x00\x00\x00',
b'\x01896630EC9100\x00\x00\x00\x00',
b'\x01896630ED0000\x00\x00\x00\x00',
b'\x01896630ED0100\x00\x00\x00\x00',
b'\x01896630ED6000\x00\x00\x00\x00',

@ -717,12 +717,14 @@ FW_VERSIONS = {
CAR.PASSAT_NMS: {
(Ecu.engine, 0x7e0, None): [
b'\xf1\x8706K906016C \xf1\x899609',
b'\xf1\x8706K906016E \xf1\x899830',
b'\xf1\x8706K906016G \xf1\x891124',
b'\xf1\x8706K906071BJ\xf1\x894891',
],
(Ecu.transmission, 0x7e1, None): [
b'\xf1\x8709G927158AB\xf1\x893318',
b'\xf1\x8709G927158BD\xf1\x893121',
b'\xf1\x8709G927158DK\xf1\x893594',
b'\xf1\x8709G927158FQ\xf1\x893745',
],
(Ecu.srs, 0x715, None): [

@ -56,39 +56,33 @@ ENABLED_STATES = (State.preEnabled, *ACTIVE_STATES)
class Controls:
def __init__(self, sm=None, pm=None, can_sock=None, CI=None):
def __init__(self, CI=None):
config_realtime_process(4, Priority.CTRL_HIGH)
# Ensure the current branch is cached, otherwise the first iteration of controlsd lags
self.branch = get_short_branch("")
# Setup sockets
self.pm = pm
if self.pm is None:
self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState',
'carControl', 'carEvents', 'carParams'])
self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState',
'carControl', 'carEvents', 'carParams'])
self.sensor_packets = ["accelerometer", "gyroscope"]
self.camera_packets = ["roadCameraState", "driverCameraState", "wideRoadCameraState"]
self.can_sock = can_sock
if can_sock is None:
can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 20
self.can_sock = messaging.sub_sock('can', timeout=can_timeout)
can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 20
self.can_sock = messaging.sub_sock('can', timeout=can_timeout)
self.log_sock = messaging.sub_sock('androidLog')
self.params = Params()
self.sm = sm
if self.sm is None:
ignore = self.sensor_packets + ['testJoystick']
if SIMULATION:
ignore += ['driverCameraState', 'managerState']
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
'testJoystick'] + self.camera_packets + self.sensor_packets,
ignore_alive=ignore, ignore_avg_freq=['radarState', 'testJoystick'])
ignore = self.sensor_packets + ['testJoystick']
if SIMULATION:
ignore += ['driverCameraState', 'managerState']
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
'testJoystick'] + self.camera_packets + self.sensor_packets,
ignore_alive=ignore, ignore_avg_freq=['radarState', 'testJoystick'])
if CI is None:
# wait for one pandaState and one CAN packet
@ -879,8 +873,8 @@ class Controls:
self.prof.display()
def main(sm=None, pm=None, logcan=None):
controls = Controls(sm, pm, logcan)
def main():
controls = Controls()
controls.controlsd_thread()

@ -4,7 +4,7 @@ from cereal import car, log
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import clip, interp
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
# WARNING: this value was determined based on the model's training distribution,
# model predictions above this speed can be unpredictable
@ -177,7 +177,7 @@ def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates):
# in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature
current_curvature_desired = curvatures[0]
psi = interp(delay, T_IDXS[:CONTROL_N], psis)
psi = interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
average_curvature_desired = psi / (v_ego * delay)
desired_curvature = 2 * average_curvature_desired - current_curvature_desired

@ -970,10 +970,10 @@ EVENTS: Dict[int, Dict[str, Union[Alert, AlertCallbackType]]] = {
if __name__ == '__main__':
# print all alerts by type and priority
from cereal.services import SERVICE_LIST
from collections import defaultdict, OrderedDict
from collections import defaultdict
event_names = {v: k for k, v in EventName.schema.enumerants.items()}
alerts_by_type: Dict[str, Dict[int, List[str]]] = defaultdict(lambda: defaultdict(list))
alerts_by_type: Dict[str, Dict[Priority, List[str]]] = defaultdict(lambda: defaultdict(list))
CP = car.CarParams.new_message()
CS = car.CarState.new_message()
@ -983,18 +983,14 @@ if __name__ == '__main__':
for et, alert in alerts.items():
if callable(alert):
alert = alert(CP, CS, sm, False, 1)
priority = alert.priority
alerts_by_type[et][priority].append(event_names[i])
alerts_by_type[et][alert.priority].append(event_names[i])
all_alerts = {}
all_alerts: Dict[str, List[tuple[Priority, List[str]]]] = {}
for et, priority_alerts in alerts_by_type.items():
all_alerts[et] = OrderedDict([
(str(priority), l)
for priority, l in sorted(priority_alerts.items(), key=lambda x: -int(x[0]))
])
all_alerts[et] = sorted(priority_alerts.items(), key=lambda x: x[0], reverse=True)
for status, evs in sorted(all_alerts.items(), key=lambda x: x[0]):
print(f"**** {status} ****")
for p, alert_list in evs.items():
print(f" {p}:")
for p, alert_list in evs:
print(f" {repr(p)}:")
print(" ", ', '.join(alert_list), "\n")

@ -5,7 +5,7 @@ import numpy as np
from casadi import SX, vertcat, sin, cos
# WARNING: imports outside of constants will not trigger a rebuild
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
if __name__ == '__main__': # generating code
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
@ -66,7 +66,7 @@ def gen_lat_ocp():
ocp = AcadosOcp()
ocp.model = gen_lat_model()
Tf = np.array(T_IDXS)[N]
Tf = np.array(ModelConstants.T_IDXS)[N]
# set dimensions
ocp.dims.N = N
@ -122,7 +122,7 @@ def gen_lat_ocp():
# set prediction horizon
ocp.solver_options.tf = Tf
ocp.solver_options.shooting_nodes = np.array(T_IDXS)[:N+1]
ocp.solver_options.shooting_nodes = np.array(ModelConstants.T_IDXS)[:N+1]
ocp.code_export_directory = EXPORT_DIR
return ocp

@ -3,7 +3,7 @@ from openpilot.common.numpy_fast import clip, interp
from openpilot.common.realtime import DT_CTRL
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, apply_deadzone
from openpilot.selfdrive.controls.lib.pid import PIDController
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
LongCtrlState = car.CarControl.Actuators.LongControlState
@ -70,19 +70,19 @@ class LongControl:
# Interp control trajectory
speeds = long_plan.speeds
if len(speeds) == CONTROL_N:
v_target_now = interp(t_since_plan, T_IDXS[:CONTROL_N], speeds)
a_target_now = interp(t_since_plan, T_IDXS[:CONTROL_N], long_plan.accels)
v_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_now = interp(t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], long_plan.accels)
v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, T_IDXS[:CONTROL_N], speeds)
v_target_lower = interp(self.CP.longitudinalActuatorDelayLowerBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_lower = 2 * (v_target_lower - v_target_now) / self.CP.longitudinalActuatorDelayLowerBound - a_target_now
v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, T_IDXS[:CONTROL_N], speeds)
v_target_upper = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan, ModelConstants.T_IDXS[:CONTROL_N], speeds)
a_target_upper = 2 * (v_target_upper - v_target_now) / self.CP.longitudinalActuatorDelayUpperBound - a_target_now
v_target = min(v_target_lower, v_target_upper)
a_target = min(a_target_lower, a_target_upper)
v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, T_IDXS[:CONTROL_N], speeds)
v_target_1sec = interp(self.CP.longitudinalActuatorDelayUpperBound + t_since_plan + 1.0, ModelConstants.T_IDXS[:CONTROL_N], speeds)
else:
v_target = 0.0
v_target_now = 0.0

@ -9,7 +9,7 @@ import cereal.messaging as messaging
from openpilot.common.conversions import Conversions as CV
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
@ -76,9 +76,9 @@ class LongitudinalPlanner:
if (len(model_msg.position.x) == 33 and
len(model_msg.velocity.x) == 33 and
len(model_msg.acceleration.x) == 33):
x = np.interp(T_IDXS_MPC, T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
v = np.interp(T_IDXS_MPC, T_IDXS, model_msg.velocity.x) - model_error
a = np.interp(T_IDXS_MPC, T_IDXS, model_msg.acceleration.x)
x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error
a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
j = np.zeros(len(T_IDXS_MPC))
else:
x = np.zeros(len(T_IDXS_MPC))
@ -135,11 +135,11 @@ class LongitudinalPlanner:
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error)
self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=self.personality)
self.v_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N]
self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N]
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
self.j_desired_trajectory = np.interp(ModelConstants.T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
@ -148,7 +148,7 @@ class LongitudinalPlanner:
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.a_desired = float(interp(DT_MDL, ModelConstants.T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):

@ -5,7 +5,7 @@ from cereal import car
from openpilot.common.params import Params
from openpilot.common.realtime import Priority, config_realtime_process
from openpilot.system.swaglog import cloudlog
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
from openpilot.selfdrive.controls.lib.lateral_planner import LateralPlanner
import cereal.messaging as messaging
@ -14,8 +14,8 @@ def cumtrapz(x, t):
return np.concatenate([[0], np.cumsum(((x[0:-1] + x[1:])/2) * np.diff(t))])
def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner):
plan_odo = cumtrapz(longitudinal_planner.v_desired_trajectory_full, T_IDXS)
model_odo = cumtrapz(lateral_planner.v_plan, T_IDXS)
plan_odo = cumtrapz(longitudinal_planner.v_desired_trajectory_full, ModelConstants.T_IDXS)
model_odo = cumtrapz(lateral_planner.v_plan, ModelConstants.T_IDXS)
ui_send = messaging.new_message('uiPlan')
ui_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
@ -27,7 +27,7 @@ def publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner):
uiPlan.accel = longitudinal_planner.a_desired_trajectory_full.tolist()
pm.send('uiPlan', ui_send)
def plannerd_thread(sm=None, pm=None):
def plannerd_thread():
config_realtime_process(5, Priority.CTRL_LOW)
cloudlog.info("plannerd is waiting for CarParams")
@ -41,12 +41,9 @@ def plannerd_thread(sm=None, pm=None):
longitudinal_planner = LongitudinalPlanner(CP)
lateral_planner = LateralPlanner(CP, debug=debug_mode)
if sm is None:
sm = messaging.SubMaster(['carControl', 'carState', 'controlsState', 'radarState', 'modelV2'],
poll=['radarState', 'modelV2'], ignore_avg_freq=['radarState'])
if pm is None:
pm = messaging.PubMaster(['longitudinalPlan', 'lateralPlan', 'uiPlan'])
pm = messaging.PubMaster(['longitudinalPlan', 'lateralPlan', 'uiPlan'])
sm = messaging.SubMaster(['carControl', 'carState', 'controlsState', 'radarState', 'modelV2'],
poll=['radarState', 'modelV2'], ignore_avg_freq=['radarState'])
while True:
sm.update()
@ -58,8 +55,8 @@ def plannerd_thread(sm=None, pm=None):
longitudinal_planner.publish(sm, pm)
publish_ui_plan(sm, pm, lateral_planner, longitudinal_planner)
def main(sm=None, pm=None):
plannerd_thread(sm, pm)
def main():
plannerd_thread()
if __name__ == "__main__":

@ -0,0 +1,50 @@
import numpy as np
from typing import List, Optional, Tuple, Any
class NPQueue:
def __init__(self, maxlen: int, rowsize: int) -> None:
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self) -> int:
return len(self.arr)
def append(self, pt: List[float]) -> None:
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds: List[Tuple[float, float]], min_points: List[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None:
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def bucket_lengths(self) -> List[int]:
return [len(v) for v in self.buckets.values()]
def __len__(self) -> int:
return sum(self.bucket_lengths())
def is_valid(self) -> bool:
individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True))
total_points_valid = self.__len__() >= self.min_points_total
return individual_buckets_valid and total_points_valid
def add_point(self, x: float, y: float, bucket_val: float) -> None:
raise NotImplementedError
def get_points(self, num_points: Optional[int] = None) -> Any:
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points: List[List[float]]) -> None:
for point in points:
self.add_point(*point)

@ -440,7 +440,7 @@ def clear_tmp_cache():
os.mkdir(Paths.download_cache_root())
def main(sm=None, pm=None):
def main():
#clear_tmp_cache()
use_qcom = not Params().get_bool("UbloxAvailable")
@ -449,8 +449,7 @@ def main(sm=None, pm=None):
else:
raw_name = "ubloxGnss"
raw_gnss_sock = messaging.sub_sock(raw_name, conflate=False)
if pm is None:
pm = messaging.PubMaster(['gnssMeasurements'])
pm = messaging.PubMaster(['gnssMeasurements'])
# disable until set as main gps source, to better analyze startup time
# TODO ensure low CPU usage before enabling

@ -117,16 +117,14 @@ def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: floa
return current_valid
def main(sm=None, pm=None):
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
if sm is None:
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
if pm is None:
pm = messaging.PubMaster(['liveParameters'])
pm = messaging.PubMaster(['liveParameters'])
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
params_reader = Params()
# wait for stats about the car to come in from controls

@ -12,6 +12,7 @@ from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.system.swaglog import cloudlog
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from openpilot.selfdrive.locationd.helpers import PointBuckets
HISTORY = 5 # secs
POINTS_PER_BUCKET = 1500
@ -43,55 +44,13 @@ def slope2rot(slope):
return np.array([[cos, -sin], [sin, cos]])
class NPQueue:
def __init__(self, maxlen, rowsize):
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self):
return len(self.arr)
def append(self, pt):
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds, min_points, min_points_total):
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=POINTS_PER_BUCKET, rowsize=3) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def bucket_lengths(self):
return [len(v) for v in self.buckets.values()]
def __len__(self):
return sum(self.bucket_lengths())
def is_valid(self):
return all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True)) \
and (self.__len__() >= self.min_points_total)
class TorqueBuckets(PointBuckets):
def add_point(self, x, y):
for bound_min, bound_max in self.x_bounds:
if (x >= bound_min) and (x < bound_max):
self.buckets[(bound_min, bound_max)].append([x, 1.0, y])
break
def get_points(self, num_points=None):
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points):
for x, y in points:
self.add_point(x, y)
class TorqueEstimator:
def __init__(self, CP, decimated=False):
@ -175,7 +134,11 @@ class TorqueEstimator:
self.resets += 1.0
self.decay = MIN_FILTER_DECAY
self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len))
self.filtered_points = PointBuckets(x_bounds=STEER_BUCKET_BOUNDS, min_points=self.min_bucket_points, min_points_total=self.min_points_total)
self.filtered_points = TorqueBuckets(x_bounds=STEER_BUCKET_BOUNDS,
min_points=self.min_bucket_points,
min_points_total=self.min_points_total,
points_per_bucket=POINTS_PER_BUCKET,
rowsize=3)
def estimate_params(self):
points = self.filtered_points.get_points(self.fit_points)
@ -255,14 +218,11 @@ class TorqueEstimator:
return msg
def main(sm=None, pm=None):
def main():
config_realtime_process([0, 1, 2, 3], 5)
if sm is None:
sm = messaging.SubMaster(['carControl', 'carState', 'liveLocationKalman'], poll=['liveLocationKalman'])
if pm is None:
pm = messaging.PubMaster(['liveTorqueParameters'])
pm = messaging.PubMaster(['liveTorqueParameters'])
sm = messaging.SubMaster(['carControl', 'carState', 'liveLocationKalman'], poll=['liveLocationKalman'])
params = Params()
with car.CarParams.from_bytes(params.get("CarParams", block=True)) as CP:

@ -45,18 +45,20 @@ snpe_rpath = lenvCython['RPATH'] + [snpe_rpath_qcom if arch == "larch64" else sn
cython_libs = envCython["LIBS"] + libs
snpemodel_lib = lenv.Library('snpemodel', ['runners/snpemodel.cc'])
commonmodel_lib = lenv.Library('commonmodel', common_src)
driving_lib = lenv.Library('driving', ['models/driving.cc'])
lenvCython.Program('runners/runmodel_pyx.so', 'runners/runmodel_pyx.pyx', LIBS=cython_libs, FRAMEWORKS=frameworks)
lenvCython.Program('runners/snpemodel_pyx.so', 'runners/snpemodel_pyx.pyx', LIBS=[snpemodel_lib, snpe_lib, *cython_libs], FRAMEWORKS=frameworks, RPATH=snpe_rpath)
lenvCython.Program('models/commonmodel_pyx.so', 'models/commonmodel_pyx.pyx', LIBS=[commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks)
lenvCython.Program('models/driving_pyx.so', 'models/driving_pyx.pyx', LIBS=[driving_lib, commonmodel_lib, *cython_libs], FRAMEWORKS=frameworks)
# Get model metadata
fn = File("models/supercombo").abspath
cmd = f'python3 {Dir("#selfdrive/modeld").abspath}/get_model_metadata.py {fn}.onnx'
files = sum([lenv.Glob("#"+x) for x in open(File("#release/files_common").abspath).read().split("\n") if x.endswith("get_model_metadata.py")], [])
lenv.Command(fn + "_metadata.pkl", [fn + ".onnx"]+files, cmd)
# Build thneed model
if arch == "larch64" or GetOption('pc_thneed'):
fn = File("models/supercombo").abspath
tinygrad_opts = ["NATIVE_EXPLOG=1", "VALIDHACKS=1", "OPTLOCAL=1", "IMAGE=2", "GPU=1", "ENABLE_METHOD_CACHE=1"]
tinygrad_opts = ["NOLOCALS=1", "IMAGE=2", "GPU=1"]
if not GetOption('pc_thneed'):
# use FLOAT16 on device for speed + don't cache the CL kernels for space
tinygrad_opts += ["FLOAT16=1", "PYOPENCL_NO_CACHE=1"]

@ -1,7 +1,80 @@
IDX_N = 33
import numpy as np
def index_function(idx, max_val=192, max_idx=32):
return (max_val) * ((idx/max_idx)**2)
class ModelConstants:
# time and distance indices
IDX_N = 33
T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)]
X_IDXS = [index_function(idx, max_val=192.0) for idx in range(IDX_N)]
LEAD_T_IDXS = [0., 2., 4., 6., 8., 10.]
LEAD_T_OFFSETS = [0., 2., 4.]
META_T_IDXS = [2., 4., 6., 8., 10.]
T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)]
# model inputs constants
MODEL_FREQ = 20
FEATURE_LEN = 512
HISTORY_BUFFER_LEN = 99
DESIRE_LEN = 8
TRAFFIC_CONVENTION_LEN = 2
NAV_FEATURE_LEN = 256
NAV_INSTRUCTION_LEN = 150
DRIVING_STYLE_LEN = 12
LAT_PLANNER_STATE_LEN = 4
# model outputs constants
FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32)
FCW_THRESHOLDS_3MS2 = np.array([.7, .7], dtype=np.float32)
DISENGAGE_WIDTH = 5
POSE_WIDTH = 6
WIDE_FROM_DEVICE_WIDTH = 3
SIM_POSE_WIDTH = 6
LEAD_WIDTH = 4
LANE_LINES_WIDTH = 2
ROAD_EDGES_WIDTH = 2
PLAN_WIDTH = 15
DESIRE_PRED_WIDTH = 8
LAT_PLANNER_SOLUTION_WIDTH = 4
NUM_LANE_LINES = 4
NUM_ROAD_EDGES = 2
LEAD_TRAJ_LEN = 6
DESIRE_PRED_LEN = 4
PLAN_MHP_N = 5
LEAD_MHP_N = 2
PLAN_MHP_SELECTION = 1
LEAD_MHP_SELECTION = 3
FCW_THRESHOLD_5MS2_HIGH = 0.15
FCW_THRESHOLD_5MS2_LOW = 0.05
FCW_THRESHOLD_3MS2 = 0.7
CONFIDENCE_BUFFER_LEN = 5
RYG_GREEN = 0.01165
RYG_YELLOW = 0.06157
# model outputs slices
class Plan:
POSITION = slice(0, 3)
VELOCITY = slice(3, 6)
ACCELERATION = slice(6, 9)
T_FROM_CURRENT_EULER = slice(9, 12)
ORIENTATION_RATE = slice(12, 15)
class Meta:
ENGAGED = slice(0, 1)
# next 2, 4, 6, 8, 10 seconds
GAS_DISENGAGE = slice(1, 36, 7)
BRAKE_DISENGAGE = slice(2, 36, 7)
STEER_OVERRIDE = slice(3, 36, 7)
HARD_BRAKE_3 = slice(4, 36, 7)
HARD_BRAKE_4 = slice(5, 36, 7)
HARD_BRAKE_5 = slice(6, 36, 7)
GAS_PRESS = slice(7, 36, 7)
# next 0, 2, 4, 6, 8, 10 seconds
LEFT_BLINKER = slice(36, 48, 2)
RIGHT_BLINKER = slice(37, 48, 2)

@ -0,0 +1,186 @@
import capnp
import numpy as np
from typing import Dict
from cereal import log
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
ConfidenceClass = log.ModelDataV2.ConfidenceClass
class PublishState:
def __init__(self):
self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
self.prev_brake_5ms2_probs = np.zeros(ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
self.prev_brake_3ms2_probs = np.zeros(ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
builder.t = t
builder.x = x.tolist()
builder.y = y.tolist()
builder.z = z.tolist()
if x_std is not None:
builder.xStd = x_std.tolist()
if y_std is not None:
builder.yStd = y_std.tolist()
if z_std is not None:
builder.zStd = z_std.tolist()
def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
builder.t = t
builder.x = x.tolist()
builder.y = y.tolist()
builder.v = v.tolist()
builder.a = a.tolist()
if x_std is not None:
builder.xStd = x_std.tolist()
if y_std is not None:
builder.yStd = y_std.tolist()
if v_std is not None:
builder.vStd = v_std.tolist()
if a_std is not None:
builder.aStd = a_std.tolist()
def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray], publish_state: PublishState,
vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
timestamp_eof: int, timestamp_llk: int, model_execution_time: float,
nav_enabled: bool, valid: bool) -> None:
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
msg.valid = valid
modelV2 = msg.modelV2
modelV2.frameId = vipc_frame_id
modelV2.frameIdExtra = vipc_frame_id_extra
modelV2.frameAge = frame_age
modelV2.frameDropPerc = frame_drop * 100
modelV2.timestampEof = timestamp_eof
modelV2.locationMonoTime = timestamp_llk
modelV2.modelExecutionTime = model_execution_time
modelV2.navEnabled = nav_enabled
# plan
position = modelV2.position
fill_xyzt(position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
velocity = modelV2.velocity
fill_xyzt(velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
acceleration = modelV2.acceleration
fill_xyzt(acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
orientation = modelV2.orientation
fill_xyzt(orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
orientation_rate = modelV2.orientationRate
fill_xyzt(orientation_rate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
# lateral planning
solution = modelV2.lateralPlannerSolution
solution.x, solution.y, solution.yaw, solution.yawRate = [net_output_data['lat_planner_solution'][0,:,i].tolist() for i in range(4)]
solution.xStd, solution.yStd, solution.yawStd, solution.yawRateStd = [net_output_data['lat_planner_solution_stds'][0,:,i].tolist() for i in range(4)]
# times at X_IDXS according to model plan
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
PLAN_T_IDXS[0] = 0.0
plan_x = net_output_data['plan'][0,:,Plan.POSITION][:,0].tolist()
for xidx in range(1, ModelConstants.IDX_N):
tidx = 0
# increment tidx until we find an element that's further away than the current xidx
while tidx < ModelConstants.IDX_N - 1 and plan_x[tidx+1] < ModelConstants.X_IDXS[xidx]:
tidx += 1
if tidx == ModelConstants.IDX_N - 1:
# if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
PLAN_T_IDXS[xidx] = ModelConstants.T_IDXS[ModelConstants.IDX_N - 1]
break
# interpolate to find `t` for the current xidx
current_x_val = plan_x[tidx]
next_x_val = plan_x[tidx+1]
p = (ModelConstants.X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val)
PLAN_T_IDXS[xidx] = p * ModelConstants.T_IDXS[tidx+1] + (1 - p) * ModelConstants.T_IDXS[tidx]
# lane lines
modelV2.init('laneLines', 4)
for i in range(4):
lane_line = modelV2.laneLines[i]
fill_xyzt(lane_line, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
# road edges
modelV2.init('roadEdges', 2)
for i in range(2):
road_edge = modelV2.roadEdges[i]
fill_xyzt(road_edge, PLAN_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
# leads
modelV2.init('leadsV3', 3)
for i in range(3):
lead = modelV2.leadsV3[i]
fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
lead.prob = net_output_data['lead_prob'][0,i].tolist()
lead.probTime = ModelConstants.LEAD_T_OFFSETS[i]
# meta
meta = modelV2.meta
meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
meta.init('disengagePredictions')
disengage_predictions = meta.disengagePredictions
disengage_predictions.t = ModelConstants.META_T_IDXS
disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]
publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:]
publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0]
hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \
(publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all()
meta.hardBrakePredicted = hard_brake_predicted.item()
# temporal pose
temporal_pose = modelV2.temporalPose
temporal_pose.trans = net_output_data['sim_pose'][0,:3].tolist()
temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist()
temporal_pose.rot = net_output_data['sim_pose'][0,3:].tolist()
temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist()
# confidence
if vipc_frame_id % (2*ModelConstants.MODEL_FREQ) == 0:
# any disengage prob
brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
# independent disengage prob for each 2s slice
ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
# rolling buf for 2, 4, 6, 8, 10s
publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:]
publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs
score = 0.
for i in range(ModelConstants.DISENGAGE_WIDTH):
score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH
if score < ModelConstants.RYG_GREEN:
modelV2.confidence = ConfidenceClass.green
elif score < ModelConstants.RYG_YELLOW:
modelV2.confidence = ConfidenceClass.yellow
else:
modelV2.confidence = ConfidenceClass.red
def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray],
vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
cameraOdometry = msg.cameraOdometry
cameraOdometry.frameId = vipc_frame_id
cameraOdometry.timestampEof = timestamp_eof
cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()

@ -0,0 +1,29 @@
#!/usr/bin/env python3
import sys
import pathlib
import onnx
import codecs
import pickle
from typing import Tuple
def get_name_and_shape(value_info:onnx.ValueInfoProto) -> Tuple[str, Tuple[int,...]]:
shape = tuple([int(dim.dim_value) for dim in value_info.type.tensor_type.shape.dim])
name = value_info.name
return name, shape
if __name__ == "__main__":
model_path = pathlib.Path(sys.argv[1])
model = onnx.load(str(model_path))
i = [x.key for x in model.metadata_props].index('output_slices')
output_slices = model.metadata_props[i].value
metadata = {}
metadata['output_slices'] = pickle.loads(codecs.decode(output_slices.encode(), "base64"))
metadata['input_shapes'] = dict([get_name_and_shape(x) for x in model.graph.input])
metadata['output_shapes'] = dict([get_name_and_shape(x) for x in model.graph.output])
metadata_path = model_path.parent / (model_path.stem + '_metadata.pkl')
with open(metadata_path, 'wb') as f:
pickle.dump(metadata, f)
print(f'saved metadata to {metadata_path}')

@ -1,7 +1,9 @@
#!/usr/bin/env python3
import sys
import time
import pickle
import numpy as np
import cereal.messaging as messaging
from pathlib import Path
from typing import Dict, Optional
from setproctitle import setproctitle
@ -15,18 +17,17 @@ from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import get_warp_matrix
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.controls.lib.lateral_planner import TRAJECTORY_SIZE
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
from openpilot.selfdrive.modeld.models.driving_pyx import (
PublishState, create_model_msg, create_pose_msg,
FEATURE_LEN, HISTORY_BUFFER_LEN, DESIRE_LEN, TRAFFIC_CONVENTION_LEN, NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN,
LAT_PLANNER_STATE_LEN, OUTPUT_SIZE, NET_OUTPUT_SIZE, MODEL_FREQ)
MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
class FrameMeta:
frame_id: int = 0
timestamp_sof: int = 0
@ -47,29 +48,39 @@ class ModelState:
def __init__(self, context: CLContext):
self.frame = ModelFrame(context)
self.wide_frame = ModelFrame(context)
self.prev_desire = np.zeros(DESIRE_LEN, dtype=np.float32)
self.output = np.zeros(NET_OUTPUT_SIZE, dtype=np.float32)
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.inputs = {
'desire': np.zeros(DESIRE_LEN * (HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lat_planner_state': np.zeros(LAT_PLANNER_STATE_LEN, dtype=np.float32),
'nav_features': np.zeros(NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32),
'features_buffer': np.zeros(HISTORY_BUFFER_LEN * FEATURE_LEN, dtype=np.float32),
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lat_planner_state': np.zeros(ModelConstants.LAT_PLANNER_STATE_LEN, dtype=np.float32),
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
}
with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
self.output_slices = model_metadata['output_slices']
net_output_size = model_metadata['output_shapes']['outputs'][1]
self.output = np.zeros(net_output_size, dtype=np.float32)
self.parser = Parser()
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
self.model.addInput("input_imgs", None)
self.model.addInput("big_input_imgs", None)
for k,v in self.inputs.items():
self.model.addInput(k, v)
def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]:
return {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[np.ndarray]:
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]:
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge
inputs['desire'][0] = 0
self.inputs['desire'][:-DESIRE_LEN] = self.inputs['desire'][DESIRE_LEN:]
self.inputs['desire'][-DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.prev_desire[:] = inputs['desire']
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
@ -86,14 +97,13 @@ class ModelState:
return None
self.model.execute()
self.inputs['features_buffer'][:-FEATURE_LEN] = self.inputs['features_buffer'][FEATURE_LEN:]
# TODO: self.output should be cast to the modeld output struct then these 2 tricky slicings can be removed
self.inputs['features_buffer'][-FEATURE_LEN:] = self.output[OUTPUT_SIZE:OUTPUT_SIZE+FEATURE_LEN]
lat_planning_output = self.output[OUTPUT_SIZE-2*LAT_PLANNER_STATE_LEN*TRAJECTORY_SIZE:OUTPUT_SIZE-LAT_PLANNER_STATE_LEN*TRAJECTORY_SIZE]
lat_planning_output = lat_planning_output.reshape((TRAJECTORY_SIZE, LAT_PLANNER_STATE_LEN))
self.inputs['lat_planner_state'][2] = interp(DT_MDL, T_IDXS, lat_planning_output[:, 2])
self.inputs['lat_planner_state'][3] = interp(DT_MDL, T_IDXS, lat_planning_output[:, 3])
return self.output
outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
self.inputs['lat_planner_state'][2] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 2])
self.inputs['lat_planner_state'][3] = interp(DT_MDL, ModelConstants.T_IDXS, outputs['lat_planner_solution'][0, :, 3])
return outputs
def main():
@ -132,22 +142,21 @@ def main():
pm = PubMaster(["modelV2", "cameraOdometry"])
sm = SubMaster(["lateralPlan", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction"])
state = PublishState()
publish_state = PublishState()
params = Params()
# setup filter to track dropped frames
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / MODEL_FREQ)
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ)
frame_id = 0
last_vipc_frame_id = 0
run_count = 0
# last = 0.0
model_transform_main = np.zeros((3, 3), dtype=np.float32)
model_transform_extra = np.zeros((3, 3), dtype=np.float32)
live_calib_seen = False
driving_style = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=np.float32)
nav_features = np.zeros(NAV_FEATURE_LEN, dtype=np.float32)
nav_instructions = np.zeros(NAV_INSTRUCTION_LEN, dtype=np.float32)
nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32)
nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)
buf_main, buf_extra = None, None
meta_main = FrameMeta()
meta_extra = FrameMeta()
@ -200,8 +209,8 @@ def main():
traffic_convention = np.zeros(2)
traffic_convention[int(is_rhd)] = 1
vec_desire = np.zeros(DESIRE_LEN, dtype=np.float32)
if desire >= 0 and desire < DESIRE_LEN:
vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
vec_desire[desire] = 1
# Enable/disable nav features
@ -254,13 +263,15 @@ def main():
model_execution_time = mt2 - mt1
if model_output is not None:
pm.send("modelV2", create_model_msg(model_output, state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen))
pm.send("cameraOdometry", create_pose_msg(model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen))
modelv2_send = messaging.new_message('modelV2')
posenet_send = messaging.new_message('cameraOdometry')
fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)
fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
pm.send('modelV2', modelv2_send)
pm.send('cameraOdometry', posenet_send)
# print("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f" %
# ((mt2 - mt1)*1000, (mt1 - last)*1000, meta_extra.frame_id, frame_id, frame_drop_ratio))
# last = mt1
last_vipc_frame_id = meta_main.frame_id

@ -20,7 +20,11 @@ To view the architecture of the ONNX networks, you can use [netron](https://netr
* **traffic convention**
* one-hot encoded vector to tell model whether traffic is right-hand or left-hand traffic : 2
* **feature buffer**
* A buffer of intermediate features that gets appended to the current feature to form a 5 seconds temporal context (at 20FPS) : 99 * 128
* A buffer of intermediate features that gets appended to the current feature to form a 5 seconds temporal context (at 20FPS) : 99 * 512
* **nav features**
* 1 * 150
* **nav instructions**
* 1 * 256
### Supercombo output format (Full size: XXX x float32)

@ -1,358 +0,0 @@
#include "selfdrive/modeld/models/driving.h"
#include <cstring>
void fill_lead(cereal::ModelDataV2::LeadDataV3::Builder lead, const ModelOutputLeads &leads, int t_idx, float prob_t) {
std::array<float, LEAD_TRAJ_LEN> lead_t = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
const auto &best_prediction = leads.get_best_prediction(t_idx);
lead.setProb(sigmoid(leads.prob[t_idx]));
lead.setProbTime(prob_t);
std::array<float, LEAD_TRAJ_LEN> lead_x, lead_y, lead_v, lead_a;
std::array<float, LEAD_TRAJ_LEN> lead_x_std, lead_y_std, lead_v_std, lead_a_std;
for (int i=0; i<LEAD_TRAJ_LEN; i++) {
lead_x[i] = best_prediction.mean[i].x;
lead_y[i] = best_prediction.mean[i].y;
lead_v[i] = best_prediction.mean[i].velocity;
lead_a[i] = best_prediction.mean[i].acceleration;
lead_x_std[i] = exp(best_prediction.std[i].x);
lead_y_std[i] = exp(best_prediction.std[i].y);
lead_v_std[i] = exp(best_prediction.std[i].velocity);
lead_a_std[i] = exp(best_prediction.std[i].acceleration);
}
lead.setT(to_kj_array_ptr(lead_t));
lead.setX(to_kj_array_ptr(lead_x));
lead.setY(to_kj_array_ptr(lead_y));
lead.setV(to_kj_array_ptr(lead_v));
lead.setA(to_kj_array_ptr(lead_a));
lead.setXStd(to_kj_array_ptr(lead_x_std));
lead.setYStd(to_kj_array_ptr(lead_y_std));
lead.setVStd(to_kj_array_ptr(lead_v_std));
lead.setAStd(to_kj_array_ptr(lead_a_std));
}
void fill_meta(cereal::ModelDataV2::MetaData::Builder meta, const ModelOutputMeta &meta_data, PublishState &ps) {
std::array<float, DESIRE_LEN> desire_state_softmax;
softmax(meta_data.desire_state_prob.array.data(), desire_state_softmax.data(), DESIRE_LEN);
std::array<float, DESIRE_PRED_LEN * DESIRE_LEN> desire_pred_softmax;
for (int i=0; i<DESIRE_PRED_LEN; i++) {
softmax(meta_data.desire_pred_prob[i].array.data(), desire_pred_softmax.data() + (i * DESIRE_LEN), DESIRE_LEN);
}
std::array<float, DISENGAGE_LEN> lat_long_t = {2, 4, 6, 8, 10};
std::array<float, DISENGAGE_LEN> gas_disengage_sigmoid, brake_disengage_sigmoid, steer_override_sigmoid,
brake_3ms2_sigmoid, brake_4ms2_sigmoid, brake_5ms2_sigmoid;
for (int i=0; i<DISENGAGE_LEN; i++) {
gas_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_disengage);
brake_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_disengage);
steer_override_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].steer_override);
brake_3ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_3ms2);
brake_4ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_4ms2);
brake_5ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_5ms2);
//gas_pressed_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_pressed);
}
std::memmove(ps.prev_brake_5ms2_probs.data(), &ps.prev_brake_5ms2_probs[1], 4*sizeof(float));
std::memmove(ps.prev_brake_3ms2_probs.data(), &ps.prev_brake_3ms2_probs[1], 2*sizeof(float));
ps.prev_brake_5ms2_probs[4] = brake_5ms2_sigmoid[0];
ps.prev_brake_3ms2_probs[2] = brake_3ms2_sigmoid[0];
bool above_fcw_threshold = true;
for (int i=0; i<ps.prev_brake_5ms2_probs.size(); i++) {
float threshold = i < 2 ? FCW_THRESHOLD_5MS2_LOW : FCW_THRESHOLD_5MS2_HIGH;
above_fcw_threshold = above_fcw_threshold && ps.prev_brake_5ms2_probs[i] > threshold;
}
for (int i=0; i<ps.prev_brake_3ms2_probs.size(); i++) {
above_fcw_threshold = above_fcw_threshold && ps.prev_brake_3ms2_probs[i] > FCW_THRESHOLD_3MS2;
}
auto disengage = meta.initDisengagePredictions();
disengage.setT(to_kj_array_ptr(lat_long_t));
disengage.setGasDisengageProbs(to_kj_array_ptr(gas_disengage_sigmoid));
disengage.setBrakeDisengageProbs(to_kj_array_ptr(brake_disengage_sigmoid));
disengage.setSteerOverrideProbs(to_kj_array_ptr(steer_override_sigmoid));
disengage.setBrake3MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_3ms2_sigmoid));
disengage.setBrake4MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_4ms2_sigmoid));
disengage.setBrake5MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_5ms2_sigmoid));
meta.setEngagedProb(sigmoid(meta_data.engaged_prob));
meta.setDesirePrediction(to_kj_array_ptr(desire_pred_softmax));
meta.setDesireState(to_kj_array_ptr(desire_state_softmax));
meta.setHardBrakePredicted(above_fcw_threshold);
}
void fill_confidence(cereal::ModelDataV2::Builder &framed, PublishState &ps) {
if (framed.getFrameId() % (2*MODEL_FREQ) == 0) {
// update every 2s to match predictions interval
auto dbps = framed.getMeta().getDisengagePredictions().getBrakeDisengageProbs();
auto dgps = framed.getMeta().getDisengagePredictions().getGasDisengageProbs();
auto dsps = framed.getMeta().getDisengagePredictions().getSteerOverrideProbs();
float any_dp[DISENGAGE_LEN];
float dp_ind[DISENGAGE_LEN];
for (int i = 0; i < DISENGAGE_LEN; i++) {
any_dp[i] = 1 - ((1-dbps[i])*(1-dgps[i])*(1-dsps[i])); // any disengage prob
}
dp_ind[0] = any_dp[0];
for (int i = 0; i < DISENGAGE_LEN-1; i++) {
dp_ind[i+1] = (any_dp[i+1] - any_dp[i]) / (1 - any_dp[i]); // independent disengage prob for each 2s slice
}
// rolling buf for 2, 4, 6, 8, 10s
std::memmove(&ps.disengage_buffer[0], &ps.disengage_buffer[DISENGAGE_LEN], sizeof(float) * DISENGAGE_LEN * (DISENGAGE_LEN-1));
std::memcpy(&ps.disengage_buffer[DISENGAGE_LEN * (DISENGAGE_LEN-1)], &dp_ind[0], sizeof(float) * DISENGAGE_LEN);
}
float score = 0;
for (int i = 0; i < DISENGAGE_LEN; i++) {
score += ps.disengage_buffer[i*DISENGAGE_LEN+DISENGAGE_LEN-1-i] / DISENGAGE_LEN;
}
if (score < RYG_GREEN) {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::GREEN);
} else if (score < RYG_YELLOW) {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::YELLOW);
} else {
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::RED);
}
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z) {
xyzt.setT(to_kj_array_ptr(t));
xyzt.setX(to_kj_array_ptr(x));
xyzt.setY(to_kj_array_ptr(y));
xyzt.setZ(to_kj_array_ptr(z));
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z,
const std::array<float, size> &x_std, const std::array<float, size> &y_std, const std::array<float, size> &z_std) {
fill_xyzt(xyzt, t, x, y, z);
xyzt.setXStd(to_kj_array_ptr(x_std));
xyzt.setYStd(to_kj_array_ptr(y_std));
xyzt.setZStd(to_kj_array_ptr(z_std));
}
void fill_plan(cereal::ModelDataV2::Builder &framed, const ModelOutputPlanPrediction &plan) {
std::array<float, TRAJECTORY_SIZE> pos_x, pos_y, pos_z;
std::array<float, TRAJECTORY_SIZE> pos_x_std, pos_y_std, pos_z_std;
std::array<float, TRAJECTORY_SIZE> vel_x, vel_y, vel_z;
std::array<float, TRAJECTORY_SIZE> rot_x, rot_y, rot_z;
std::array<float, TRAJECTORY_SIZE> acc_x, acc_y, acc_z;
std::array<float, TRAJECTORY_SIZE> rot_rate_x, rot_rate_y, rot_rate_z;
for (int i=0; i<TRAJECTORY_SIZE; i++) {
pos_x[i] = plan.mean[i].position.x;
pos_y[i] = plan.mean[i].position.y;
pos_z[i] = plan.mean[i].position.z;
pos_x_std[i] = exp(plan.std[i].position.x);
pos_y_std[i] = exp(plan.std[i].position.y);
pos_z_std[i] = exp(plan.std[i].position.z);
vel_x[i] = plan.mean[i].velocity.x;
vel_y[i] = plan.mean[i].velocity.y;
vel_z[i] = plan.mean[i].velocity.z;
acc_x[i] = plan.mean[i].acceleration.x;
acc_y[i] = plan.mean[i].acceleration.y;
acc_z[i] = plan.mean[i].acceleration.z;
rot_x[i] = plan.mean[i].rotation.x;
rot_y[i] = plan.mean[i].rotation.y;
rot_z[i] = plan.mean[i].rotation.z;
rot_rate_x[i] = plan.mean[i].rotation_rate.x;
rot_rate_y[i] = plan.mean[i].rotation_rate.y;
rot_rate_z[i] = plan.mean[i].rotation_rate.z;
}
fill_xyzt(framed.initPosition(), T_IDXS_FLOAT, pos_x, pos_y, pos_z, pos_x_std, pos_y_std, pos_z_std);
fill_xyzt(framed.initVelocity(), T_IDXS_FLOAT, vel_x, vel_y, vel_z);
fill_xyzt(framed.initAcceleration(), T_IDXS_FLOAT, acc_x, acc_y, acc_z);
fill_xyzt(framed.initOrientation(), T_IDXS_FLOAT, rot_x, rot_y, rot_z);
fill_xyzt(framed.initOrientationRate(), T_IDXS_FLOAT, rot_rate_x, rot_rate_y, rot_rate_z);
}
void fill_lateral_planner(cereal::ModelDataV2::Builder &framed, const LateralPlannerOutput &model_lateral_planner_solution) {
std::array<float, TRAJECTORY_SIZE> lateral_plan_solution_x, lateral_plan_solution_y, lateral_plan_solution_yaw, lateral_plan_solution_yaw_rate;
std::array<float, TRAJECTORY_SIZE> lateral_plan_solution_x_std, lateral_plan_solution_y_std, lateral_plan_solution_yaw_std, lateral_plan_solution_yaw_rate_std;
for (int i=0; i<TRAJECTORY_SIZE; i++) {
lateral_plan_solution_x[i] = model_lateral_planner_solution.mean[i].x;
lateral_plan_solution_y[i] = model_lateral_planner_solution.mean[i].y;
lateral_plan_solution_yaw[i] = model_lateral_planner_solution.mean[i].yaw;
lateral_plan_solution_yaw_rate[i] = model_lateral_planner_solution.mean[i].yaw_rate;
lateral_plan_solution_x_std[i] = exp(model_lateral_planner_solution.std[i].x);
lateral_plan_solution_y_std[i] = exp(model_lateral_planner_solution.std[i].y);
lateral_plan_solution_yaw_std[i] = exp(model_lateral_planner_solution.std[i].yaw);
lateral_plan_solution_yaw_rate_std[i] = exp(model_lateral_planner_solution.std[i].yaw_rate);
}
auto lateral_planner_solution = framed.initLateralPlannerSolution();
lateral_planner_solution.setX(to_kj_array_ptr(lateral_plan_solution_x));
lateral_planner_solution.setY(to_kj_array_ptr(lateral_plan_solution_y));
lateral_planner_solution.setYaw(to_kj_array_ptr(lateral_plan_solution_yaw));
lateral_planner_solution.setYawRate(to_kj_array_ptr(lateral_plan_solution_yaw_rate));
lateral_planner_solution.setXStd(to_kj_array_ptr(lateral_plan_solution_x_std));
lateral_planner_solution.setYStd(to_kj_array_ptr(lateral_plan_solution_y_std));
lateral_planner_solution.setYawStd(to_kj_array_ptr(lateral_plan_solution_yaw_std));
lateral_planner_solution.setYawRateStd(to_kj_array_ptr(lateral_plan_solution_yaw_rate_std));
}
void fill_lane_lines(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputLaneLines &lanes) {
std::array<float, TRAJECTORY_SIZE> left_far_y, left_far_z;
std::array<float, TRAJECTORY_SIZE> left_near_y, left_near_z;
std::array<float, TRAJECTORY_SIZE> right_near_y, right_near_z;
std::array<float, TRAJECTORY_SIZE> right_far_y, right_far_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_far_y[j] = lanes.mean.left_far[j].y;
left_far_z[j] = lanes.mean.left_far[j].z;
left_near_y[j] = lanes.mean.left_near[j].y;
left_near_z[j] = lanes.mean.left_near[j].z;
right_near_y[j] = lanes.mean.right_near[j].y;
right_near_z[j] = lanes.mean.right_near[j].z;
right_far_y[j] = lanes.mean.right_far[j].y;
right_far_z[j] = lanes.mean.right_far[j].z;
}
auto lane_lines = framed.initLaneLines(4);
fill_xyzt(lane_lines[0], plan_t, X_IDXS_FLOAT, left_far_y, left_far_z);
fill_xyzt(lane_lines[1], plan_t, X_IDXS_FLOAT, left_near_y, left_near_z);
fill_xyzt(lane_lines[2], plan_t, X_IDXS_FLOAT, right_near_y, right_near_z);
fill_xyzt(lane_lines[3], plan_t, X_IDXS_FLOAT, right_far_y, right_far_z);
framed.setLaneLineStds({
exp(lanes.std.left_far[0].y),
exp(lanes.std.left_near[0].y),
exp(lanes.std.right_near[0].y),
exp(lanes.std.right_far[0].y),
});
framed.setLaneLineProbs({
sigmoid(lanes.prob.left_far.val),
sigmoid(lanes.prob.left_near.val),
sigmoid(lanes.prob.right_near.val),
sigmoid(lanes.prob.right_far.val),
});
}
void fill_road_edges(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputRoadEdges &edges) {
std::array<float, TRAJECTORY_SIZE> left_y, left_z;
std::array<float, TRAJECTORY_SIZE> right_y, right_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_y[j] = edges.mean.left[j].y;
left_z[j] = edges.mean.left[j].z;
right_y[j] = edges.mean.right[j].y;
right_z[j] = edges.mean.right[j].z;
}
auto road_edges = framed.initRoadEdges(2);
fill_xyzt(road_edges[0], plan_t, X_IDXS_FLOAT, left_y, left_z);
fill_xyzt(road_edges[1], plan_t, X_IDXS_FLOAT, right_y, right_z);
framed.setRoadEdgeStds({
exp(edges.std.left[0].y),
exp(edges.std.right[0].y),
});
}
void fill_model(cereal::ModelDataV2::Builder &framed, const ModelOutput &net_outputs, PublishState &ps) {
const auto &best_plan = net_outputs.plans.get_best_prediction();
std::array<float, TRAJECTORY_SIZE> plan_t;
std::fill_n(plan_t.data(), plan_t.size(), NAN);
plan_t[0] = 0.0;
for (int xidx=1, tidx=0; xidx<TRAJECTORY_SIZE; xidx++) {
// increment tidx until we find an element that's further away than the current xidx
for (int next_tid = tidx + 1; next_tid < TRAJECTORY_SIZE && best_plan.mean[next_tid].position.x < X_IDXS[xidx]; next_tid++) {
tidx++;
}
if (tidx == TRAJECTORY_SIZE - 1) {
// if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
plan_t[xidx] = T_IDXS[TRAJECTORY_SIZE - 1];
break;
}
// interpolate to find `t` for the current xidx
float current_x_val = best_plan.mean[tidx].position.x;
float next_x_val = best_plan.mean[tidx+1].position.x;
float p = (X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val);
plan_t[xidx] = p * T_IDXS[tidx+1] + (1 - p) * T_IDXS[tidx];
}
fill_plan(framed, best_plan);
fill_lateral_planner(framed, net_outputs.lateral_planner_solution);
fill_lane_lines(framed, plan_t, net_outputs.lane_lines);
fill_road_edges(framed, plan_t, net_outputs.road_edges);
// meta
fill_meta(framed.initMeta(), net_outputs.meta, ps);
// confidence
fill_confidence(framed, ps);
// leads
auto leads = framed.initLeadsV3(LEAD_MHP_SELECTION);
std::array<float, LEAD_MHP_SELECTION> t_offsets = {0.0, 2.0, 4.0};
for (int i=0; i<LEAD_MHP_SELECTION; i++) {
fill_lead(leads[i], net_outputs.leads, i, t_offsets[i]);
}
// temporal pose
const auto &v_mean = net_outputs.temporal_pose.velocity_mean;
const auto &r_mean = net_outputs.temporal_pose.rotation_mean;
const auto &v_std = net_outputs.temporal_pose.velocity_std;
const auto &r_std = net_outputs.temporal_pose.rotation_std;
auto temporal_pose = framed.initTemporalPose();
temporal_pose.setTrans({v_mean.x, v_mean.y, v_mean.z});
temporal_pose.setRot({r_mean.x, r_mean.y, r_mean.z});
temporal_pose.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
temporal_pose.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
}
void fill_model_msg(MessageBuilder &msg, float *net_output_data, PublishState &ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, const bool nav_enabled, const bool valid) {
const uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0;
auto framed = msg.initEvent(valid).initModelV2();
framed.setFrameId(vipc_frame_id);
framed.setFrameIdExtra(vipc_frame_id_extra);
framed.setFrameAge(frame_age);
framed.setFrameDropPerc(frame_drop * 100);
framed.setTimestampEof(timestamp_eof);
framed.setLocationMonoTime(timestamp_llk);
framed.setModelExecutionTime(model_execution_time);
framed.setNavEnabled(nav_enabled);
if (send_raw_pred) {
framed.setRawPredictions(kj::ArrayPtr<const float>(net_output_data, NET_OUTPUT_SIZE).asBytes());
}
fill_model(framed, *((ModelOutput*) net_output_data), ps);
}
void fill_pose_msg(MessageBuilder &msg, float *net_output_data, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, const bool valid) {
const ModelOutput &net_outputs = *((ModelOutput*) net_output_data);
const auto &v_mean = net_outputs.pose.velocity_mean;
const auto &r_mean = net_outputs.pose.rotation_mean;
const auto &t_mean = net_outputs.wide_from_device_euler.mean;
const auto &v_std = net_outputs.pose.velocity_std;
const auto &r_std = net_outputs.pose.rotation_std;
const auto &t_std = net_outputs.wide_from_device_euler.std;
const auto &road_transform_trans_mean = net_outputs.road_transform.position_mean;
const auto &road_transform_trans_std = net_outputs.road_transform.position_std;
auto posenetd = msg.initEvent(valid && (vipc_dropped_frames < 1)).initCameraOdometry();
posenetd.setTrans({v_mean.x, v_mean.y, v_mean.z});
posenetd.setRot({r_mean.x, r_mean.y, r_mean.z});
posenetd.setWideFromDeviceEuler({t_mean.x, t_mean.y, t_mean.z});
posenetd.setRoadTransformTrans({road_transform_trans_mean.x, road_transform_trans_mean.y, road_transform_trans_mean.z});
posenetd.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
posenetd.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
posenetd.setWideFromDeviceEulerStd({exp(t_std.x), exp(t_std.y), exp(t_std.z)});
posenetd.setRoadTransformTransStd({exp(road_transform_trans_std.x), exp(road_transform_trans_std.y), exp(road_transform_trans_std.z)});
posenetd.setTimestampEof(timestamp_eof);
posenetd.setFrameId(vipc_frame_id);
}

@ -1,273 +0,0 @@
#pragma once
#include <array>
#include <memory>
#include "cereal/messaging/messaging.h"
#include "common/modeldata.h"
#include "common/util.h"
#include "selfdrive/modeld/models/commonmodel.h"
#include "selfdrive/modeld/runners/run.h"
constexpr int FEATURE_LEN = 512;
constexpr int HISTORY_BUFFER_LEN = 99;
constexpr int DESIRE_LEN = 8;
constexpr int DESIRE_PRED_LEN = 4;
constexpr int TRAFFIC_CONVENTION_LEN = 2;
constexpr int LAT_PLANNER_STATE_LEN = 4;
constexpr int NAV_FEATURE_LEN = 256;
constexpr int NAV_INSTRUCTION_LEN = 150;
constexpr int DRIVING_STYLE_LEN = 12;
constexpr int MODEL_FREQ = 20;
constexpr int DISENGAGE_LEN = 5;
constexpr int BLINKER_LEN = 6;
constexpr int META_STRIDE = 7;
constexpr int PLAN_MHP_N = 5;
constexpr int LEAD_MHP_N = 2;
constexpr int LEAD_TRAJ_LEN = 6;
constexpr int LEAD_MHP_SELECTION = 3;
// Padding to get output shape as multiple of 4
constexpr int PAD_SIZE = 2;
constexpr float FCW_THRESHOLD_5MS2_HIGH = 0.15;
constexpr float FCW_THRESHOLD_5MS2_LOW = 0.05;
constexpr float FCW_THRESHOLD_3MS2 = 0.7;
struct ModelOutputXYZ {
float x;
float y;
float z;
};
static_assert(sizeof(ModelOutputXYZ) == sizeof(float)*3);
struct ModelOutputYZ {
float y;
float z;
};
static_assert(sizeof(ModelOutputYZ) == sizeof(float)*2);
struct LateralPlannerOutputElement {
float x;
float y;
float yaw;
float yaw_rate;
};
static_assert(sizeof(LateralPlannerOutputElement) == sizeof(float)*4);
struct LateralPlannerOutput {
std::array<LateralPlannerOutputElement, TRAJECTORY_SIZE> mean;
std::array<LateralPlannerOutputElement, TRAJECTORY_SIZE> std;
};
static_assert(sizeof(LateralPlannerOutput) == (sizeof(LateralPlannerOutputElement)*TRAJECTORY_SIZE*2));
struct ModelOutputPlanElement {
ModelOutputXYZ position;
ModelOutputXYZ velocity;
ModelOutputXYZ acceleration;
ModelOutputXYZ rotation;
ModelOutputXYZ rotation_rate;
};
static_assert(sizeof(ModelOutputPlanElement) == sizeof(ModelOutputXYZ)*5);
struct ModelOutputPlanPrediction {
std::array<ModelOutputPlanElement, TRAJECTORY_SIZE> mean;
std::array<ModelOutputPlanElement, TRAJECTORY_SIZE> std;
float prob;
};
static_assert(sizeof(ModelOutputPlanPrediction) == (sizeof(ModelOutputPlanElement)*TRAJECTORY_SIZE*2) + sizeof(float));
struct ModelOutputPlans {
std::array<ModelOutputPlanPrediction, PLAN_MHP_N> prediction;
constexpr const ModelOutputPlanPrediction &get_best_prediction() const {
int max_idx = 0;
for (int i = 1; i < prediction.size(); i++) {
if (prediction[i].prob > prediction[max_idx].prob) {
max_idx = i;
}
}
return prediction[max_idx];
}
};
static_assert(sizeof(ModelOutputPlans) == sizeof(ModelOutputPlanPrediction)*PLAN_MHP_N);
struct ModelOutputLinesXY {
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left_far;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left_near;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right_near;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right_far;
};
static_assert(sizeof(ModelOutputLinesXY) == sizeof(ModelOutputYZ)*TRAJECTORY_SIZE*4);
struct ModelOutputLineProbVal {
float val_deprecated;
float val;
};
static_assert(sizeof(ModelOutputLineProbVal) == sizeof(float)*2);
struct ModelOutputLinesProb {
ModelOutputLineProbVal left_far;
ModelOutputLineProbVal left_near;
ModelOutputLineProbVal right_near;
ModelOutputLineProbVal right_far;
};
static_assert(sizeof(ModelOutputLinesProb) == sizeof(ModelOutputLineProbVal)*4);
struct ModelOutputLaneLines {
ModelOutputLinesXY mean;
ModelOutputLinesXY std;
ModelOutputLinesProb prob;
};
static_assert(sizeof(ModelOutputLaneLines) == (sizeof(ModelOutputLinesXY)*2) + sizeof(ModelOutputLinesProb));
struct ModelOutputEdgessXY {
std::array<ModelOutputYZ, TRAJECTORY_SIZE> left;
std::array<ModelOutputYZ, TRAJECTORY_SIZE> right;
};
static_assert(sizeof(ModelOutputEdgessXY) == sizeof(ModelOutputYZ)*TRAJECTORY_SIZE*2);
struct ModelOutputRoadEdges {
ModelOutputEdgessXY mean;
ModelOutputEdgessXY std;
};
static_assert(sizeof(ModelOutputRoadEdges) == (sizeof(ModelOutputEdgessXY)*2));
struct ModelOutputLeadElement {
float x;
float y;
float velocity;
float acceleration;
};
static_assert(sizeof(ModelOutputLeadElement) == sizeof(float)*4);
struct ModelOutputLeadPrediction {
std::array<ModelOutputLeadElement, LEAD_TRAJ_LEN> mean;
std::array<ModelOutputLeadElement, LEAD_TRAJ_LEN> std;
std::array<float, LEAD_MHP_SELECTION> prob;
};
static_assert(sizeof(ModelOutputLeadPrediction) == (sizeof(ModelOutputLeadElement)*LEAD_TRAJ_LEN*2) + (sizeof(float)*LEAD_MHP_SELECTION));
struct ModelOutputLeads {
std::array<ModelOutputLeadPrediction, LEAD_MHP_N> prediction;
std::array<float, LEAD_MHP_SELECTION> prob;
constexpr const ModelOutputLeadPrediction &get_best_prediction(int t_idx) const {
int max_idx = 0;
for (int i = 1; i < prediction.size(); i++) {
if (prediction[i].prob[t_idx] > prediction[max_idx].prob[t_idx]) {
max_idx = i;
}
}
return prediction[max_idx];
}
};
static_assert(sizeof(ModelOutputLeads) == (sizeof(ModelOutputLeadPrediction)*LEAD_MHP_N) + (sizeof(float)*LEAD_MHP_SELECTION));
struct ModelOutputPose {
ModelOutputXYZ velocity_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ velocity_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputPose) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputWideFromDeviceEuler {
ModelOutputXYZ mean;
ModelOutputXYZ std;
};
static_assert(sizeof(ModelOutputWideFromDeviceEuler) == sizeof(ModelOutputXYZ)*2);
struct ModelOutputTemporalPose {
ModelOutputXYZ velocity_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ velocity_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputTemporalPose) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputRoadTransform {
ModelOutputXYZ position_mean;
ModelOutputXYZ rotation_mean;
ModelOutputXYZ position_std;
ModelOutputXYZ rotation_std;
};
static_assert(sizeof(ModelOutputRoadTransform) == sizeof(ModelOutputXYZ)*4);
struct ModelOutputDisengageProb {
float gas_disengage;
float brake_disengage;
float steer_override;
float brake_3ms2;
float brake_4ms2;
float brake_5ms2;
float gas_pressed;
};
static_assert(sizeof(ModelOutputDisengageProb) == sizeof(float)*7);
struct ModelOutputBlinkerProb {
float left;
float right;
};
static_assert(sizeof(ModelOutputBlinkerProb) == sizeof(float)*2);
struct ModelOutputDesireProb {
union {
struct {
float none;
float turn_left;
float turn_right;
float lane_change_left;
float lane_change_right;
float keep_left;
float keep_right;
float null;
};
struct {
std::array<float, DESIRE_LEN> array;
};
};
};
static_assert(sizeof(ModelOutputDesireProb) == sizeof(float)*DESIRE_LEN);
struct ModelOutputMeta {
ModelOutputDesireProb desire_state_prob;
float engaged_prob;
std::array<ModelOutputDisengageProb, DISENGAGE_LEN> disengage_prob;
std::array<ModelOutputBlinkerProb, BLINKER_LEN> blinker_prob;
std::array<ModelOutputDesireProb, DESIRE_PRED_LEN> desire_pred_prob;
};
static_assert(sizeof(ModelOutputMeta) == sizeof(ModelOutputDesireProb) + sizeof(float) + (sizeof(ModelOutputDisengageProb)*DISENGAGE_LEN) + (sizeof(ModelOutputBlinkerProb)*BLINKER_LEN) + (sizeof(ModelOutputDesireProb)*DESIRE_PRED_LEN));
struct ModelOutputFeatures {
std::array<float, FEATURE_LEN> feature;
};
static_assert(sizeof(ModelOutputFeatures) == (sizeof(float)*FEATURE_LEN));
struct ModelOutput {
const ModelOutputPlans plans;
const ModelOutputLaneLines lane_lines;
const ModelOutputRoadEdges road_edges;
const ModelOutputLeads leads;
const ModelOutputMeta meta;
const ModelOutputPose pose;
const ModelOutputWideFromDeviceEuler wide_from_device_euler;
const ModelOutputTemporalPose temporal_pose;
const ModelOutputRoadTransform road_transform;
const LateralPlannerOutput lateral_planner_solution;
};
constexpr int OUTPUT_SIZE = sizeof(ModelOutput) / sizeof(float);
constexpr int NET_OUTPUT_SIZE = OUTPUT_SIZE + FEATURE_LEN + PAD_SIZE;
struct PublishState {
std::array<float, DISENGAGE_LEN * DISENGAGE_LEN> disengage_buffer = {};
std::array<float, 5> prev_brake_5ms2_probs = {};
std::array<float, 3> prev_brake_3ms2_probs = {};
};
void fill_model_msg(MessageBuilder &msg, float *net_output_data, PublishState &ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, const bool nav_enabled, const bool valid);
void fill_pose_msg(MessageBuilder &msg, float *net_outputs, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, const bool valid);

@ -1,26 +0,0 @@
# distutils: language = c++
from libcpp cimport bool
from libc.stdint cimport uint32_t, uint64_t
cdef extern from "cereal/messaging/messaging.h":
cdef cppclass MessageBuilder:
size_t getSerializedSize()
int serializeToBuffer(unsigned char *, size_t)
cdef extern from "selfdrive/modeld/models/driving.h":
cdef int FEATURE_LEN
cdef int HISTORY_BUFFER_LEN
cdef int DESIRE_LEN
cdef int TRAFFIC_CONVENTION_LEN
cdef int LAT_PLANNER_STATE_LEN
cdef int DRIVING_STYLE_LEN
cdef int NAV_FEATURE_LEN
cdef int NAV_INSTRUCTION_LEN
cdef int OUTPUT_SIZE
cdef int NET_OUTPUT_SIZE
cdef int MODEL_FREQ
cdef struct PublishState: pass
void fill_model_msg(MessageBuilder, float *, PublishState, uint32_t, uint32_t, uint32_t, float, uint64_t, uint64_t, float, bool, bool)
void fill_pose_msg(MessageBuilder, float *, uint32_t, uint32_t, uint64_t, bool)

@ -1,54 +0,0 @@
# distutils: language = c++
# cython: c_string_encoding=ascii
import numpy as np
cimport numpy as cnp
from libcpp cimport bool
from libc.string cimport memcpy
from libc.stdint cimport uint32_t, uint64_t
from .commonmodel cimport mat3
from .driving cimport FEATURE_LEN as CPP_FEATURE_LEN, HISTORY_BUFFER_LEN as CPP_HISTORY_BUFFER_LEN, DESIRE_LEN as CPP_DESIRE_LEN, \
TRAFFIC_CONVENTION_LEN as CPP_TRAFFIC_CONVENTION_LEN, DRIVING_STYLE_LEN as CPP_DRIVING_STYLE_LEN, \
NAV_FEATURE_LEN as CPP_NAV_FEATURE_LEN, NAV_INSTRUCTION_LEN as CPP_NAV_INSTRUCTION_LEN, \
LAT_PLANNER_STATE_LEN as CPP_LAT_PLANNER_STATE_LEN, \
OUTPUT_SIZE as CPP_OUTPUT_SIZE, NET_OUTPUT_SIZE as CPP_NET_OUTPUT_SIZE, MODEL_FREQ as CPP_MODEL_FREQ
from .driving cimport MessageBuilder, PublishState as cppPublishState
from .driving cimport fill_model_msg, fill_pose_msg
FEATURE_LEN = CPP_FEATURE_LEN
HISTORY_BUFFER_LEN = CPP_HISTORY_BUFFER_LEN
DESIRE_LEN = CPP_DESIRE_LEN
TRAFFIC_CONVENTION_LEN = CPP_TRAFFIC_CONVENTION_LEN
LAT_PLANNER_STATE_LEN = CPP_LAT_PLANNER_STATE_LEN
DRIVING_STYLE_LEN = CPP_DRIVING_STYLE_LEN
NAV_FEATURE_LEN = CPP_NAV_FEATURE_LEN
NAV_INSTRUCTION_LEN = CPP_NAV_INSTRUCTION_LEN
OUTPUT_SIZE = CPP_OUTPUT_SIZE
NET_OUTPUT_SIZE = CPP_NET_OUTPUT_SIZE
MODEL_FREQ = CPP_MODEL_FREQ
cdef class PublishState:
cdef cppPublishState state
def create_model_msg(float[:] model_outputs, PublishState ps, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
uint64_t timestamp_eof, uint64_t timestamp_llk, float model_execution_time, bool nav_enabled, bool valid):
cdef MessageBuilder msg
fill_model_msg(msg, &model_outputs[0], ps.state, vipc_frame_id, vipc_frame_id_extra, frame_id, frame_drop,
timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, valid)
output_size = msg.getSerializedSize()
output_data = bytearray(output_size)
cdef unsigned char * output_ptr = output_data
assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize"
return bytes(output_data)
def create_pose_msg(float[:] model_outputs, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames, uint64_t timestamp_eof, bool valid):
cdef MessageBuilder msg
fill_pose_msg(msg, &model_outputs[0], vipc_frame_id, vipc_dropped_frames, timestamp_eof, valid)
output_size = msg.getSerializedSize()
output_data = bytearray(output_size)
cdef unsigned char * output_ptr = output_data
assert msg.serializeToBuffer(output_ptr, output_size) > 0, "output buffer is too small to serialize"
return bytes(output_data)

@ -13,13 +13,13 @@ from cereal.visionipc import VisionIpcClient, VisionStreamType
from openpilot.system.swaglog import cloudlog
from openpilot.common.params import Params
from openpilot.common.realtime import set_realtime_priority
from openpilot.selfdrive.modeld.constants import IDX_N
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
NAV_INPUT_SIZE = 256*256
NAV_FEATURE_LEN = 256
NAV_DESIRE_LEN = 32
NAV_OUTPUT_SIZE = 2*2*IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN
NAV_OUTPUT_SIZE = 2*2*ModelConstants.IDX_N + NAV_DESIRE_LEN + NAV_FEATURE_LEN
MODEL_PATHS = {
ModelRunner.SNPE: Path(__file__).parent / 'models/navmodel_q.dlc',
ModelRunner.ONNX: Path(__file__).parent / 'models/navmodel.onnx'}
@ -31,8 +31,8 @@ class NavModelOutputXY(ctypes.Structure):
class NavModelOutputPlan(ctypes.Structure):
_fields_ = [
("mean", NavModelOutputXY*IDX_N),
("std", NavModelOutputXY*IDX_N)]
("mean", NavModelOutputXY*ModelConstants.IDX_N),
("std", NavModelOutputXY*ModelConstants.IDX_N)]
class NavModelResult(ctypes.Structure):
_fields_ = [

@ -0,0 +1,101 @@
import numpy as np
from typing import Dict
from openpilot.selfdrive.modeld.constants import ModelConstants
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def softmax(x, axis=-1):
x -= np.max(x, axis=axis, keepdims=True)
if x.dtype == np.float32 or x.dtype == np.float64:
np.exp(x, out=x)
else:
x = np.exp(x)
x /= np.sum(x, axis=axis, keepdims=True)
return x
class Parser:
def __init__(self, ignore_missing=False):
self.ignore_missing = ignore_missing
def check_missing(self, outs, name):
if name not in outs and not self.ignore_missing:
raise ValueError(f"Missing output {name}")
return name not in outs
def parse_categorical_crossentropy(self, name, outs, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
if out_shape is not None:
raw = raw.reshape((raw.shape[0],) + out_shape)
outs[name] = softmax(raw, axis=-1)
def parse_binary_crossentropy(self, name, outs):
if self.check_missing(outs, name):
return
raw = outs[name]
outs[name] = sigmoid(raw)
def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
pred_mu = raw[:,:,:(raw.shape[2] - out_N)//2]
n_values = (raw.shape[2] - out_N)//2
pred_mu = raw[:,:,:n_values]
pred_std = np.exp(raw[:,:,n_values: 2*n_values])
if in_N > 1:
weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
for i in range(out_N):
weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
if out_N == 1:
for fidx in range(weights.shape[0]):
idxs = np.argsort(weights[fidx][:,0])[::-1]
weights[fidx] = weights[fidx][idxs]
pred_mu[fidx] = pred_mu[fidx][idxs]
pred_std[fidx] = pred_std[fidx][idxs]
full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
outs[name + '_weights'] = weights
outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
for fidx in range(weights.shape[0]):
for hidx in range(out_N):
idxs = np.argsort(weights[fidx,:,hidx])[::-1]
pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
else:
pred_mu_final = pred_mu
pred_std_final = pred_std
if out_N > 1:
final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
else:
final_shape = tuple([raw.shape[0],] + list(out_shape))
outs[name] = pred_mu_final.reshape(final_shape)
outs[name + '_stds'] = pred_std_final.reshape(final_shape)
def parse_outputs(self, outs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('sim_pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
self.parse_binary_crossentropy(k, outs)
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
return outs

@ -1,32 +0,0 @@
import struct
import json
def load_thneed(fn):
with open(fn, "rb") as f:
json_len = struct.unpack("I", f.read(4))[0]
jdat = json.loads(f.read(json_len).decode('latin_1'))
weights = f.read()
ptr = 0
for o in jdat['objects']:
if o['needs_load']:
nptr = ptr + o['size']
o['data'] = weights[ptr:nptr]
ptr = nptr
for o in jdat['binaries']:
nptr = ptr + o['length']
o['data'] = weights[ptr:nptr]
ptr = nptr
return jdat
def save_thneed(jdat, fn):
new_weights = []
for o in jdat['objects'] + jdat['binaries']:
if 'data' in o:
new_weights.append(o['data'])
del o['data']
new_weights_bytes = b''.join(new_weights)
with open(fn, "wb") as f:
j = json.dumps(jdat, ensure_ascii=False).encode('latin_1')
f.write(struct.pack("I", len(j)))
f.write(j)
f.write(new_weights_bytes)

@ -10,15 +10,12 @@ from openpilot.selfdrive.controls.lib.events import Events
from openpilot.selfdrive.monitoring.driver_monitor import DriverStatus
def dmonitoringd_thread(sm=None, pm=None):
def dmonitoringd_thread():
gc.disable()
set_realtime_priority(2)
if pm is None:
pm = messaging.PubMaster(['driverMonitoringState'])
if sm is None:
sm = messaging.SubMaster(['driverStateV2', 'liveCalibration', 'carState', 'controlsState', 'modelV2'], poll=['driverStateV2'])
pm = messaging.PubMaster(['driverMonitoringState'])
sm = messaging.SubMaster(['driverStateV2', 'liveCalibration', 'carState', 'controlsState', 'modelV2'], poll=['driverStateV2'])
driver_status = DriverStatus(rhd_saved=Params().get_bool("IsRhdDetected"))
@ -89,8 +86,8 @@ def dmonitoringd_thread(sm=None, pm=None):
driver_status.wheel_on_right == (driver_status.wheelpos_learner.filtered_stat.M > driver_status.settings._WHEELPOS_THRESHOLD)):
put_bool_nonblocking("IsRhdDetected", driver_status.wheel_on_right)
def main(sm=None, pm=None):
dmonitoringd_thread(sm, pm)
def main():
dmonitoringd_thread()
if __name__ == '__main__':

@ -344,11 +344,9 @@ class RouteEngine:
# TODO: Check for going wrong way in segment
def main(sm=None, pm=None):
if sm is None:
sm = messaging.SubMaster(['liveLocationKalman', 'managerState'])
if pm is None:
pm = messaging.PubMaster(['navInstruction', 'navRoute'])
def main():
pm = messaging.PubMaster(['navInstruction', 'navRoute'])
sm = messaging.SubMaster(['liveLocationKalman', 'managerState'])
rk = Ratekeeper(1.0)
route_engine = RouteEngine(sm, pm)

@ -1,9 +1,6 @@
if [ $1 = "base" ]; then
export DOCKER_IMAGE=openpilot-base
export DOCKER_FILE=Dockerfile.openpilot_base
elif [ $1 = "docs" ]; then
export DOCKER_IMAGE=openpilot-docs
export DOCKER_FILE=docs/docker/Dockerfile
elif [ $1 = "sim" ]; then
export DOCKER_IMAGE=openpilot-sim
export DOCKER_FILE=tools/sim/Dockerfile.sim

@ -6,7 +6,7 @@ from cereal import log
import cereal.messaging as messaging
from openpilot.common.realtime import Ratekeeper, DT_MDL
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.modeld.constants import T_IDXS
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longitudinal_planner import LongitudinalPlanner
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
@ -100,13 +100,13 @@ class Plant:
# this is to ensure lead policy is effective when model
# does not predict slowdown in e2e mode
position = log.XYZTData.new_message()
position.x = [float(x) for x in (self.speed + 0.5) * np.array(T_IDXS)]
position.x = [float(x) for x in (self.speed + 0.5) * np.array(ModelConstants.T_IDXS)]
model.modelV2.position = position
velocity = log.XYZTData.new_message()
velocity.x = [float(x) for x in (self.speed + 0.5) * np.ones_like(T_IDXS)]
velocity.x = [float(x) for x in (self.speed + 0.5) * np.ones_like(ModelConstants.T_IDXS)]
model.modelV2.velocity = velocity
acceleration = log.XYZTData.new_message()
acceleration.x = [float(x) for x in np.zeros_like(T_IDXS)]
acceleration.x = [float(x) for x in np.zeros_like(ModelConstants.T_IDXS)]
model.modelV2.acceleration = acceleration
control.controlsState.longControlState = LongCtrlState.pid if self.enabled else LongCtrlState.off

@ -52,10 +52,10 @@ Then, check in the new logs using git-lfs. Make sure to also update the `ref_com
Process replay test suite exposes programmatic APIs for simultaneously running processes or groups of processes on provided logs.
```py
def replay_process_with_name(name: Union[str, Iterable[str]], lr: Union[LogReader, List[capnp._DynamicStructReader]], *args, **kwargs) -> List[capnp._DynamicStructReader]:
def replay_process_with_name(name: Union[str, Iterable[str]], lr: LogIterable, *args, **kwargs) -> List[capnp._DynamicStructReader]:
def replay_process(
cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: Union[LogReader, List[capnp._DynamicStructReader]], frs: Optional[Dict[str, Any]] = None,
cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: LogIterable, frs: Optional[Dict[str, Any]] = None,
fingerprint: Optional[str] = None, return_all_logs: bool = False, custom_params: Optional[Dict[str, Any]] = None, disable_progress: bool = False
) -> List[capnp._DynamicStructReader]:
```

@ -90,43 +90,53 @@ def compare_logs(log1, log2, ignore_fields=None, ignore_msgs=None, tolerance=Non
return diff
def format_process_diff(diff):
diff_short, diff_long = "", ""
if isinstance(diff, str):
diff_short += f" {diff}\n"
diff_long += f"\t{diff}\n"
else:
cnt: Dict[str, int] = {}
for d in diff:
diff_long += f"\t{str(d)}\n"
k = str(d[1])
cnt[k] = 1 if k not in cnt else cnt[k] + 1
for k, v in sorted(cnt.items()):
diff_short += f" {k}: {v}\n"
return diff_short, diff_long
def format_diff(results, log_paths, ref_commit):
diff1, diff2 = "", ""
diff2 += f"***** tested against commit {ref_commit} *****\n"
diff_short, diff_long = "", ""
diff_long += f"***** tested against commit {ref_commit} *****\n"
failed = False
for segment, result in list(results.items()):
diff1 += f"***** results for segment {segment} *****\n"
diff2 += f"***** differences for segment {segment} *****\n"
diff_short += f"***** results for segment {segment} *****\n"
diff_long += f"***** differences for segment {segment} *****\n"
for proc, diff in list(result.items()):
# long diff
diff2 += f"*** process: {proc} ***\n"
diff2 += f"\tref: {log_paths[segment][proc]['ref']}\n"
diff2 += f"\tnew: {log_paths[segment][proc]['new']}\n\n"
# short diff
diff1 += f" {proc}\n"
if isinstance(diff, str):
diff1 += f" ref: {log_paths[segment][proc]['ref']}\n"
diff1 += f" new: {log_paths[segment][proc]['new']}\n\n"
diff1 += f" {diff}\n"
diff_long += f"*** process: {proc} ***\n"
diff_long += f"\tref: {log_paths[segment][proc]['ref']}\n"
diff_long += f"\tnew: {log_paths[segment][proc]['new']}\n\n"
diff_short += f" {proc}\n"
if isinstance(diff, str) or len(diff):
diff_short += f" ref: {log_paths[segment][proc]['ref']}\n"
diff_short += f" new: {log_paths[segment][proc]['new']}\n\n"
failed = True
elif len(diff):
diff1 += f" ref: {log_paths[segment][proc]['ref']}\n"
diff1 += f" new: {log_paths[segment][proc]['new']}\n\n"
cnt: Dict[str, int] = {}
for d in diff:
diff2 += f"\t{str(d)}\n"
proc_diff_short, proc_diff_long = format_process_diff(diff)
k = str(d[1])
cnt[k] = 1 if k not in cnt else cnt[k] + 1
diff_long += proc_diff_long
diff_short += proc_diff_short
for k, v in sorted(cnt.items()):
diff1 += f" {k}: {v}\n"
failed = True
return diff1, diff2, failed
return diff_short, diff_long, failed
if __name__ == "__main__":
@ -135,7 +145,7 @@ if __name__ == "__main__":
ignore_fields = sys.argv[3:] or ["logMonoTime", "controlsState.startMonoTime", "controlsState.cumLagMs"]
results = {"segment": {"proc": compare_logs(log1, log2, ignore_fields)}}
log_paths = {"segment": {"proc": {"ref": sys.argv[1], "new": sys.argv[2]}}}
diff1, diff2, failed = format_diff(results, log_paths, None)
diff_short, diff_long, failed = format_diff(results, log_paths, None)
print(diff2)
print(diff1)
print(diff_long)
print(diff_short)

@ -212,13 +212,13 @@ if __name__ == "__main__":
results: Any = {TEST_ROUTE: {}}
log_paths: Any = {TEST_ROUTE: {"models": {'ref': BASE_URL + log_fn, 'new': log_fn}}}
results[TEST_ROUTE]["models"] = compare_logs(cmp_log, log_msgs, tolerance=tolerance, ignore_fields=ignore)
diff1, diff2, failed = format_diff(results, log_paths, ref_commit)
diff_short, diff_long, failed = format_diff(results, log_paths, ref_commit)
print(diff2)
print(diff_long)
print('-------------\n'*5)
print(diff1)
print(diff_short)
with open("model_diff.txt", "w") as f:
f.write(diff2)
f.write(diff_long)
except Exception as e:
print(str(e))
failed = True

@ -1 +1 @@
ed2d58ec217fafb7b6b8f5e27ec622acd9e734f4
0e0f55cf3bb2cf79b44adf190e6387a83deb6646

@ -26,7 +26,7 @@ from openpilot.selfdrive.manager.process_config import managed_processes
from openpilot.selfdrive.test.process_replay.vision_meta import meta_from_camera_state, available_streams
from openpilot.selfdrive.test.process_replay.migration import migrate_all
from openpilot.selfdrive.test.process_replay.capture import ProcessOutputCapture
from openpilot.tools.lib.logreader import LogReader
from openpilot.tools.lib.logreader import LogIterable
# Numpy gives different results based on CPU features after version 19
NUMPY_TOLERANCE = 1e-7
@ -224,7 +224,7 @@ class ProcessContainer:
def start(
self, params_config: Dict[str, Any], environ_config: Dict[str, Any],
all_msgs: Union[LogReader, List[capnp._DynamicStructReader]],
all_msgs: LogIterable,
fingerprint: Optional[str], capture_output: bool
):
with self.prefix as p:
@ -599,7 +599,7 @@ def get_process_config(name: str) -> ProcessConfig:
raise Exception(f"Cannot find process config with name: {name}") from ex
def get_custom_params_from_lr(lr: Union[LogReader, List[capnp._DynamicStructReader]], initial_state: str = "first") -> Dict[str, Any]:
def get_custom_params_from_lr(lr: LogIterable, initial_state: str = "first") -> Dict[str, Any]:
"""
Use this to get custom params dict based on provided logs.
Useful when replaying following processes: calibrationd, paramsd, torqued
@ -631,8 +631,7 @@ def get_custom_params_from_lr(lr: Union[LogReader, List[capnp._DynamicStructRead
return custom_params
def replay_process_with_name(name: Union[str, Iterable[str]], lr: Union[LogReader,
List[capnp._DynamicStructReader]], *args, **kwargs) -> List[capnp._DynamicStructReader]:
def replay_process_with_name(name: Union[str, Iterable[str]], lr: LogIterable, *args, **kwargs) -> List[capnp._DynamicStructReader]:
if isinstance(name, str):
cfgs = [get_process_config(name)]
elif isinstance(name, Iterable):
@ -644,7 +643,7 @@ def replay_process_with_name(name: Union[str, Iterable[str]], lr: Union[LogReade
def replay_process(
cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: Union[LogReader, List[capnp._DynamicStructReader]], frs: Optional[Dict[str, Any]] = None,
cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: LogIterable, frs: Optional[Dict[str, Any]] = None,
fingerprint: Optional[str] = None, return_all_logs: bool = False, custom_params: Optional[Dict[str, Any]] = None,
captured_output_store: Optional[Dict[str, Dict[str, str]]] = None, disable_progress: bool = False
) -> List[capnp._DynamicStructReader]:
@ -672,7 +671,7 @@ def replay_process(
def _replay_multi_process(
cfgs: List[ProcessConfig], lr: Union[LogReader, List[capnp._DynamicStructReader]], frs: Optional[Dict[str, Any]], fingerprint: Optional[str],
cfgs: List[ProcessConfig], lr: LogIterable, frs: Optional[Dict[str, Any]], fingerprint: Optional[str],
custom_params: Optional[Dict[str, Any]], captured_output_store: Optional[Dict[str, Dict[str, str]]], disable_progress: bool
) -> List[capnp._DynamicStructReader]:
if fingerprint is not None:
@ -799,7 +798,7 @@ def generate_environ_config(CP=None, fingerprint=None, log_dir=None) -> Dict[str
return environ_dict
def check_openpilot_enabled(msgs: Union[LogReader, List[capnp._DynamicStructReader]]) -> bool:
def check_openpilot_enabled(msgs: LogIterable) -> bool:
cur_enabled_count = 0
max_enabled_count = 0
for msg in msgs:

@ -11,12 +11,12 @@ from openpilot.selfdrive.test.process_replay.process_replay import CONFIGS, FAKE
from openpilot.selfdrive.test.update_ci_routes import upload_route
from openpilot.tools.lib.route import Route
from openpilot.tools.lib.framereader import FrameReader
from openpilot.tools.lib.logreader import LogReader
from openpilot.tools.lib.logreader import LogReader, LogIterable
from openpilot.tools.lib.helpers import save_log
def regen_segment(
lr: Union[LogReader, List[capnp._DynamicStructReader]], frs: Optional[Dict[str, Any]] = None,
lr: LogIterable, frs: Optional[Dict[str, Any]] = None,
processes: Iterable[ProcessConfig] = CONFIGS, disable_tqdm: bool = False
) -> List[capnp._DynamicStructReader]:
all_msgs = sorted(lr, key=lambda m: m.logMonoTime)

@ -61,7 +61,7 @@ segments = [
]
# dashcamOnly makes don't need to be tested until a full port is done
excluded_interfaces = ["mock", "mazda", "tesla"]
excluded_interfaces = ["mock", "tesla"]
BASE_URL = "https://commadataci.blob.core.windows.net/openpilotci/"
REF_COMMIT_FN = os.path.join(PROC_REPLAY_DIR, "ref_commit")
@ -207,11 +207,11 @@ if __name__ == "__main__":
if not args.upload_only:
results[segment][proc] = result
diff1, diff2, failed = format_diff(results, log_paths, ref_commit)
diff_short, diff_long, failed = format_diff(results, log_paths, ref_commit)
if not upload:
with open(os.path.join(PROC_REPLAY_DIR, "diff.txt"), "w") as f:
f.write(diff2)
print(diff1)
f.write(diff_long)
print(diff_short)
if failed:
print("TEST FAILED")

@ -1,4 +1,5 @@
#!/usr/bin/env python3
import bz2
import math
import json
import os
@ -34,9 +35,9 @@ PROCS = {
"selfdrive.controls.plannerd": 16.5,
"./_ui": 18.0,
"selfdrive.locationd.paramsd": 9.0,
"./_sensord": 7.0,
"./sensord": 7.0,
"selfdrive.controls.radard": 4.5,
"selfdrive.modeld.modeld": 8.0,
"selfdrive.modeld.modeld": 13.0,
"selfdrive.modeld.dmonitoringmodeld": 8.0,
"selfdrive.modeld.navmodeld": 1.0,
"selfdrive.thermald.thermald": 3.87,
@ -161,6 +162,7 @@ class TestOnroad(unittest.TestCase):
# use the second segment by default as it's the first full segment
cls.lr = list(LogReader(os.path.join(str(cls.segments[1]), "rlog")))
cls.log_path = cls.segments[1]
@cached_property
def service_msgs(self):
@ -191,6 +193,26 @@ class TestOnroad(unittest.TestCase):
big_logs = [f for f, n in cnt.most_common(3) if n / sum(cnt.values()) > 30.]
self.assertEqual(len(big_logs), 0, f"Log spam: {big_logs}")
def test_log_sizes(self):
for f in self.log_path.iterdir():
assert f.is_file()
sz = f.stat().st_size / 1e6
if f.name in ("qlog", "rlog"):
with open(f, 'rb') as ff:
sz = len(bz2.compress(ff.read())) / 1e6
if f.name == "qcamera.ts":
assert 2.15 < sz < 2.35
elif f.name == "qlog":
assert 0.7 < sz < 1.0
elif f.name == "rlog":
assert 5 < sz < 50
elif f.name.endswith('.hevc'):
assert 70 < sz < 77
else:
raise NotImplementedError
def test_ui_timings(self):
result = "\n"
result += "------------------------------------------------\n"

@ -1,5 +1,4 @@
#!/bin/sh
cd "$(dirname "$0")"
export LD_LIBRARY_PATH="/system/lib64:$LD_LIBRARY_PATH"
export QT_QPA_PLATFORM="offscreen"
exec ./_soundd

@ -4,5 +4,4 @@ if [ -f /TICI ] && [ ! -f qt/spinner ]; then
cp qt/spinner_larch64 qt/spinner
fi
export LD_LIBRARY_PATH="/system/lib64:$LD_LIBRARY_PATH"
exec ./qt/spinner "$1"

@ -4,5 +4,4 @@ if [ -f /TICI ] && [ ! -f qt/text ]; then
cp qt/text_larch64 qt/text
fi
export LD_LIBRARY_PATH="/system/lib64:$LD_LIBRARY_PATH"
exec ./qt/text "$1"

@ -1,5 +1,4 @@
#!/bin/sh
cd "$(dirname "$0")"
export LD_LIBRARY_PATH="/system/lib64:$LD_LIBRARY_PATH"
export QT_DBL_CLICK_DIST=150
exec ./_ui

@ -26,7 +26,7 @@ typedef cereal::CarControl::HUDControl::AudibleAlert AudibleAlert;
const mat3 DEFAULT_CALIBRATION = {{ 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0 }};
const vec3 default_face_kpts_3d[] = {
constexpr vec3 default_face_kpts_3d[] = {
{-5.98, -51.20, 8.00}, {-17.64, -49.14, 8.00}, {-23.81, -46.40, 8.00}, {-29.98, -40.91, 8.00}, {-32.04, -37.49, 8.00},
{-34.10, -32.00, 8.00}, {-36.16, -21.03, 8.00}, {-36.16, 6.40, 8.00}, {-35.47, 10.51, 8.00}, {-32.73, 19.43, 8.00},
{-29.30, 26.29, 8.00}, {-24.50, 33.83, 8.00}, {-19.01, 41.37, 8.00}, {-14.21, 46.17, 8.00}, {-12.16, 47.54, 8.00},

@ -0,0 +1,115 @@
#!/usr/bin/env python3
import os
import math
import time
import binascii
import requests
import serial
import subprocess
def post(url, payload):
print()
print("POST to", url)
r = requests.post(
url,
data=payload,
verify=False,
headers={
"Content-Type": "application/json",
"X-Admin-Protocol": "gsma/rsp/v2.2.0",
"charset": "utf-8",
"User-Agent": "gsma-rsp-lpad",
},
)
print("resp", r)
print("resp text", repr(r.text))
print()
r.raise_for_status()
ret = f"HTTP/1.1 {r.status_code}"
ret += ''.join(f"{k}: {v}" for k, v in r.headers.items() if k != 'Connection')
return ret.encode() + r.content
class LPA:
def __init__(self):
self.dev = serial.Serial('/dev/ttyUSB2', baudrate=57600, timeout=1, bytesize=8)
self.dev.reset_input_buffer()
self.dev.reset_output_buffer()
assert "OK" in self.at("AT")
def at(self, cmd):
print(f"==> {cmd}")
self.dev.write(cmd.encode() + b'\r\n')
r = b""
cnt = 0
while b"OK" not in r and b"ERROR" not in r and cnt < 20:
r += self.dev.read(8192).strip()
cnt += 1
r = r.decode()
print(f"<== {repr(r)}")
return r
def download_ota(self, qr):
return self.at(f'AT+QESIM="ota","{qr}"')
def download(self, qr):
smdp = qr.split('$')[1]
out = self.at(f'AT+QESIM="download","{qr}"')
for _ in range(5):
line = out.split("+QESIM: ")[1].split("\r\n\r\nOK")[0]
parts = [x.strip().strip('"') for x in line.split(',', maxsplit=4)]
print(repr(parts))
trans, ret, url, payloadlen, payload = parts
assert trans == "trans" and ret == "0"
assert len(payload) == int(payloadlen)
r = post(f"https://{smdp}/{url}", payload)
to_send = binascii.hexlify(r).decode()
chunk_len = 1400
for i in range(math.ceil(len(to_send) / chunk_len)):
state = 1 if (i+1)*chunk_len < len(to_send) else 0
data = to_send[i * chunk_len : (i+1)*chunk_len]
out = self.at(f'AT+QESIM="trans",{len(to_send)},{state},{i},{len(data)},"{data}"')
assert "OK" in out
if '+QESIM:"download",1' in out:
raise Exception("profile install failed")
elif '+QESIM:"download",0' in out:
print("done, successfully loaded")
break
def enable(self, iccid):
self.at(f'AT+QESIM="enable","{iccid}"')
def disable(self, iccid):
self.at(f'AT+QESIM="disable","{iccid}"')
def delete(self, iccid):
self.at(f'AT+QESIM="delete","{iccid}"')
def list_profiles(self):
out = self.at('AT+QESIM="list"')
return out.strip().splitlines()[1:]
if __name__ == "__main__":
import sys
if "RESTART" in os.environ:
subprocess.check_call("sudo systemctl stop ModemManager", shell=True)
subprocess.check_call("/usr/comma/lte/lte.sh stop_blocking", shell=True)
subprocess.check_call("/usr/comma/lte/lte.sh start", shell=True)
while not os.path.exists('/dev/ttyUSB2'):
time.sleep(1)
time.sleep(3)
lpa = LPA()
print(lpa.list_profiles())
if len(sys.argv) > 1:
lpa.download(sys.argv[1])
print(lpa.list_profiles())

@ -28,7 +28,7 @@ class Proc:
PROCS = [
Proc('camerad', 2.1, msgs=['roadCameraState', 'wideRoadCameraState', 'driverCameraState']),
Proc('modeld', 0.93, atol=0.2, msgs=['modelV2']),
Proc('modeld', 1.0, atol=0.2, msgs=['modelV2']),
Proc('dmonitoringmodeld', 0.4, msgs=['driverStateV2']),
Proc('encoderd', 0.23, msgs=[]),
Proc('mapsd', 0.05, msgs=['mapRenderState']),

@ -24,9 +24,12 @@
// ***** log metadata *****
kj::Array<capnp::word> logger_build_init_data() {
uint64_t wall_time = nanos_since_epoch();
MessageBuilder msg;
auto init = msg.initEvent().initInitData();
init.setWallTimeNanos(wall_time);
init.setVersion(COMMA_VERSION);
init.setDirty(!getenv("CLEAN"));
init.setDeviceType(Hardware::get_device_type());

@ -40,9 +40,9 @@ def apply_a_weighting(measurements: np.ndarray) -> np.ndarray:
class Mic:
def __init__(self, pm):
self.pm = pm
def __init__(self):
self.rk = Ratekeeper(RATE)
self.pm = messaging.PubMaster(['microphone'])
self.measurements = np.empty(0)
@ -93,11 +93,8 @@ class Mic:
self.update()
def main(pm=None):
if pm is None:
pm = messaging.PubMaster(['microphone'])
mic = Mic(pm)
def main():
mic = Mic()
mic.micd_thread()

@ -1 +1 @@
_sensord
sensord

@ -14,4 +14,4 @@ sensors = [
libs = [common, cereal, messaging, 'capnp', 'zmq', 'kj', 'pthread']
if arch == "larch64":
libs.append('i2c')
env.Program('_sensord', ['sensors_qcom2.cc'] + sensors, LIBS=libs)
env.Program('sensord', ['sensors_qcom2.cc'] + sensors, LIBS=libs)

@ -1,4 +0,0 @@
#!/bin/sh
cd "$(dirname "$0")"
export LD_LIBRARY_PATH="/system/lib64:$LD_LIBRARY_PATH"
exec ./_sensord

@ -108,7 +108,7 @@ class TestSensord(unittest.TestCase):
os.environ["LSM_SELF_TEST"] = "1"
# read initial sensor values every test case can use
os.system("pkill -f ./_sensord")
os.system("pkill -f ./sensord")
try:
managed_processes["sensord"].start()
cls.sample_secs = int(os.getenv("SAMPLE_SECS", "10"))

@ -1 +1 @@
Subproject commit d8dda2af3afcef0bb772fff580cfa8b3eabf7f69
Subproject commit 5a4a62ecaecb2bfd8bb0f77033aca46df4e668bd

@ -24,6 +24,7 @@ BinaryView::BinaryView(QWidget *parent) : QTableView(parent) {
delegate = new BinaryItemDelegate(this);
setItemDelegate(delegate);
horizontalHeader()->setSectionResizeMode(QHeaderView::Stretch);
horizontalHeader()->setFont(QFontDatabase::systemFont(QFontDatabase::FixedFont));
verticalHeader()->setSectionsClickable(false);
verticalHeader()->setSectionResizeMode(QHeaderView::Fixed);
verticalHeader()->setDefaultSectionSize(CELL_HEIGHT);

@ -370,6 +370,10 @@ void ChartsWidget::doAutoScroll() {
}
}
QSize ChartsWidget::minimumSizeHint() const {
return QSize(CHART_MIN_WIDTH, QWidget::minimumSizeHint().height());
}
void ChartsWidget::resizeEvent(QResizeEvent *event) {
QWidget::resizeEvent(event);
updateLayout();
@ -405,16 +409,15 @@ void ChartsWidget::removeAll() {
tabbar->removeTab(1);
}
tab_charts.clear();
zoomReset();
if (!charts.isEmpty()) {
for (auto c : charts) {
delete c;
}
charts.clear();
updateToolBar();
emit seriesChanged();
}
zoomReset();
}
void ChartsWidget::alignCharts() {

@ -54,6 +54,7 @@ signals:
void seriesChanged();
private:
QSize minimumSizeHint() const override;
void resizeEvent(QResizeEvent *event) override;
bool event(QEvent *event) override;
void alignCharts();

@ -134,11 +134,13 @@ void DetailWidget::refresh() {
for (auto s : binary_view->getOverlappingSignals()) {
warnings.push_back(tr("%1 has overlapping bits.").arg(s->name));
}
name_label->setText(QString("%1 (%2)").arg(msgName(msg_id), msg->transmitter));
} else {
warnings.push_back(tr("Drag-Select in binary view to create new signal."));
name_label->setText(msgName(msg_id));
}
QString msg_name = msg ? QString("%1 (%2)").arg(msg->name, msg->transmitter) : msgName(msg_id);
name_label->setText(msg_name);
name_label->setToolTip(msg_name);
remove_btn->setEnabled(msg != nullptr);
if (!warnings.isEmpty()) {

@ -39,13 +39,15 @@ VideoWidget::VideoWidget(QWidget *parent) : QFrame(parent) {
group->setExclusive(true);
QHBoxLayout *control_layout = new QHBoxLayout();
play_btn = new QPushButton();
play_btn = new QToolButton();
play_btn->setSizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred);
control_layout->addWidget(play_btn);
if (can->liveStreaming()) {
control_layout->addWidget(skip_to_end_btn = new QPushButton(utils::icon("skip-end-fill"), {}));
control_layout->addWidget(skip_to_end_btn = new QToolButton(this));
skip_to_end_btn->setSizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred);
skip_to_end_btn->setIcon(utils::icon("skip-end-fill"));
skip_to_end_btn->setToolTip(tr("Skip to the end"));
QObject::connect(skip_to_end_btn, &QPushButton::clicked, [group]() {
QObject::connect(skip_to_end_btn, &QToolButton::clicked, [group]() {
// set speed to 1.0
group->buttons()[2]->click();
can->pause(false);
@ -54,9 +56,11 @@ VideoWidget::VideoWidget(QWidget *parent) : QFrame(parent) {
}
for (float speed : {0.1, 0.5, 1., 2.}) {
QPushButton *btn = new QPushButton(QString("%1x").arg(speed), this);
QToolButton *btn = new QToolButton(this);
btn->setSizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred);
btn->setText(QString("%1x").arg(speed));
btn->setCheckable(true);
QObject::connect(btn, &QPushButton::clicked, [speed]() { can->setSpeed(speed); });
QObject::connect(btn, &QToolButton::clicked, [speed]() { can->setSpeed(speed); });
control_layout->addWidget(btn);
group->addButton(btn);
if (speed == 1.0) btn->setChecked(true);
@ -64,7 +68,7 @@ VideoWidget::VideoWidget(QWidget *parent) : QFrame(parent) {
main_layout->addLayout(control_layout);
setSizePolicy(QSizePolicy::Preferred, QSizePolicy::Maximum);
QObject::connect(play_btn, &QPushButton::clicked, []() { can->pause(!can->isPaused()); });
QObject::connect(play_btn, &QToolButton::clicked, []() { can->pause(!can->isPaused()); });
QObject::connect(can, &AbstractStream::paused, this, &VideoWidget::updatePlayBtnState);
QObject::connect(can, &AbstractStream::resume, this, &VideoWidget::updatePlayBtnState);
QObject::connect(&settings, &Settings::changed, this, &VideoWidget::updatePlayBtnState);

@ -9,8 +9,8 @@
#include <QFuture>
#include <QLabel>
#include <QPushButton>
#include <QSlider>
#include <QToolButton>
#include "selfdrive/ui/qt/widgets/cameraview.h"
#include "tools/cabana/streams/abstractstream.h"
@ -80,8 +80,8 @@ protected:
double maximum_time = 0;
QLabel *end_time_label;
QLabel *time_label;
QPushButton *play_btn;
QPushButton *skip_to_end_btn = nullptr;
QToolButton *play_btn;
QToolButton *skip_to_end_btn = nullptr;
InfoLabel *alert_label;
Slider *slider;
};

@ -54,8 +54,8 @@ fi
eval "$(pyenv init --path)"
echo "update pip"
pip install pip==23.2.1
pip install poetry==1.5.1
pip install pip==23.3
pip install poetry==1.6.1
poetry config virtualenvs.prefer-active-python true --local
poetry config virtualenvs.in-project true --local

@ -3,7 +3,6 @@ import os
import pickle
import struct
import subprocess
import tempfile
import threading
from enum import IntEnum
from functools import wraps
@ -61,16 +60,14 @@ def fingerprint_video(fn):
def ffprobe(fn, fmt=None):
fn = resolve_name(fn)
cmd = ["ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format", "-show_streams"]
cmd = ["ffprobe", "-v", "quiet", "-print_format", "json", "-show_format", "-show_streams"]
if fmt:
cmd += ["-f", fmt]
cmd += [fn]
cmd += ["-i", "-"]
try:
ffprobe_output = subprocess.check_output(cmd)
with FileReader(fn) as f:
ffprobe_output = subprocess.check_output(cmd, input=f.read(4096))
except subprocess.CalledProcessError as e:
raise DataUnreadableError(fn) from e
@ -170,31 +167,21 @@ def rgb24tonv12(rgb):
def decompress_video_data(rawdat, vid_fmt, w, h, pix_fmt):
# using a tempfile is much faster than proc.communicate for some reason
with tempfile.TemporaryFile() as tmpf:
tmpf.write(rawdat)
tmpf.seek(0)
threads = os.getenv("FFMPEG_THREADS", "0")
cuda = os.getenv("FFMPEG_CUDA", "0") == "1"
args = ["ffmpeg",
"-threads", threads,
"-hwaccel", "none" if not cuda else "cuda",
"-c:v", "hevc",
"-vsync", "0",
"-f", vid_fmt,
"-flags2", "showall",
"-i", "pipe:0",
"-threads", threads,
"-f", "rawvideo",
"-pix_fmt", pix_fmt,
"pipe:1"]
with subprocess.Popen(args, stdin=tmpf, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) as proc:
# dat = proc.communicate()[0]
dat = proc.stdout.read()
if proc.wait() != 0:
raise DataUnreadableError("ffmpeg failed")
threads = os.getenv("FFMPEG_THREADS", "0")
cuda = os.getenv("FFMPEG_CUDA", "0") == "1"
args = ["ffmpeg", "-v", "quiet",
"-threads", threads,
"-hwaccel", "none" if not cuda else "cuda",
"-c:v", "hevc",
"-vsync", "0",
"-f", vid_fmt,
"-flags2", "showall",
"-i", "-",
"-threads", threads,
"-f", "rawvideo",
"-pix_fmt", pix_fmt,
"-"]
dat = subprocess.check_output(args, input=rawdat)
if pix_fmt == "rgb24":
ret = np.frombuffer(dat, dtype=np.uint8).reshape(-1, h, w, 3)

@ -6,11 +6,14 @@ import urllib.parse
import capnp
import warnings
from typing import Iterable, Iterator
from cereal import log as capnp_log
from openpilot.tools.lib.filereader import FileReader
from openpilot.tools.lib.route import Route, SegmentName
LogIterable = Iterable[capnp._DynamicStructReader]
# this is an iterator itself, and uses private variables from LogReader
class MultiLogIterator:
def __init__(self, log_paths, sort_by_time=False):
@ -30,7 +33,7 @@ class MultiLogIterator:
return self._log_readers[i]
def __iter__(self):
def __iter__(self) -> Iterator[capnp._DynamicStructReader]:
return self
def _inc(self):
@ -107,7 +110,7 @@ class LogReader:
def from_bytes(cls, dat):
return cls("", dat=dat)
def __iter__(self):
def __iter__(self) -> Iterator[capnp._DynamicStructReader]:
for ent in self._ents:
if self._only_union_types:
try:

@ -116,9 +116,9 @@ def ui_thread(addr):
if yuv_img_raw is None or not yuv_img_raw.data.any():
continue
imgff = np.frombuffer(yuv_img_raw.data, dtype=np.uint8).reshape((vipc_client.height * 3 // 2, vipc_client.width))
imgff = np.frombuffer(yuv_img_raw.data, dtype=np.uint8).reshape((len(yuv_img_raw.data) // vipc_client.stride, vipc_client.stride))
num_px = vipc_client.width * vipc_client.height
bgr = cv2.cvtColor(imgff, cv2.COLOR_YUV2RGB_NV12)
bgr = cv2.cvtColor(imgff[:vipc_client.height * 3 // 2, :vipc_client.width], cv2.COLOR_YUV2RGB_NV12)
zoom_matrix = _BB_TO_FULL_FRAME[num_px]
cv2.warpAffine(bgr, zoom_matrix[:2], (img.shape[1], img.shape[0]), dst=img, flags=cv2.WARP_INVERSE_MAP)

@ -31,6 +31,7 @@ COPY ./panda ${OPENPILOT_PATH}/panda
COPY ./selfdrive ${OPENPILOT_PATH}/selfdrive
COPY ./system ${OPENPILOT_PATH}/system
COPY ./tools ${OPENPILOT_PATH}/tools
COPY ./release ${OPENPILOT_PATH}/release
RUN --mount=type=bind,source=.ci_cache/scons_cache,target=/tmp/scons_cache,rw scons -j$(nproc) --cache-readonly

Loading…
Cancel
Save