Lateral torque-based control with roll on TSS2 corolla and TSSP rav4 (#24260)

* Initial commit

* Fix bugs

* Need more torque rate

* Cleanup cray cray control

* Write nicely

* Chiiil

* Not relevant for cray cray control

* Do some logging

* Seems like it has more torque than I thought

* Bit more feedforward

* Tune change

* Retune

* Retune

* Little more chill

* Add coroll

* Add corolla

* Give craycray a good name

* Update to proper logging

* D to the PI

* Should be in radians

* Add d

* Start oscillations

* Add D term

* Only change torque rate limits for new tune

* Add d logging

* Should be enough

* Wrong sign in D

* Downtune a little

* Needed to prevent faults

* Add lqr rav4 to tune

* Try derivative again

* Data based retune

* Data based retune

* add friction compensation

* Doesnt need too much P with friction comp

* remove lqr

* Remove kd

* Fix tests

* fix tests

* Too much error

* Get roll induced error under 1cm/deg

* Too much jitter

* Do roll comp

* Add ki

* Final update

* Update refs

* Cleanup latcontrol_torque a little more
pull/24265/head
HaraldSchafer 3 years ago committed by GitHub
parent 6877059b45
commit fe0bcdaef6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      release/files_common
  2. 4
      selfdrive/car/tests/test_car_interfaces.py
  3. 4
      selfdrive/car/tests/test_models.py
  4. 3
      selfdrive/car/toyota/carcontroller.py
  5. 7
      selfdrive/car/toyota/interface.py
  6. 24
      selfdrive/car/toyota/tunes.py
  7. 10
      selfdrive/car/toyota/values.py
  8. 12
      selfdrive/controls/controlsd.py
  9. 2
      selfdrive/controls/lib/latcontrol.py
  10. 2
      selfdrive/controls/lib/latcontrol_angle.py
  11. 2
      selfdrive/controls/lib/latcontrol_indi.py
  12. 84
      selfdrive/controls/lib/latcontrol_lqr.py
  13. 2
      selfdrive/controls/lib/latcontrol_pid.py
  14. 79
      selfdrive/controls/lib/latcontrol_torque.py
  15. 4
      selfdrive/controls/lib/tests/test_latcontrol.py
  16. 2
      selfdrive/test/process_replay/ref_commit

@ -238,7 +238,7 @@ selfdrive/controls/lib/events.py
selfdrive/controls/lib/lane_planner.py selfdrive/controls/lib/lane_planner.py
selfdrive/controls/lib/latcontrol_angle.py selfdrive/controls/lib/latcontrol_angle.py
selfdrive/controls/lib/latcontrol_indi.py selfdrive/controls/lib/latcontrol_indi.py
selfdrive/controls/lib/latcontrol_lqr.py selfdrive/controls/lib/latcontrol_torque.py
selfdrive/controls/lib/latcontrol_pid.py selfdrive/controls/lib/latcontrol_pid.py
selfdrive/controls/lib/latcontrol.py selfdrive/controls/lib/latcontrol.py
selfdrive/controls/lib/lateral_planner.py selfdrive/controls/lib/lateral_planner.py

@ -38,8 +38,8 @@ class TestCarInterfaces(unittest.TestCase):
tuning = car_params.lateralTuning.which() tuning = car_params.lateralTuning.which()
if tuning == 'pid': if tuning == 'pid':
self.assertTrue(len(car_params.lateralTuning.pid.kpV)) self.assertTrue(len(car_params.lateralTuning.pid.kpV))
elif tuning == 'lqr': elif tuning == 'torque':
self.assertTrue(len(car_params.lateralTuning.lqr.a)) self.assertTrue(car_params.lateralTuning.torque.kf > 0)
elif tuning == 'indi': elif tuning == 'indi':
self.assertTrue(len(car_params.lateralTuning.indi.outerLoopGainV)) self.assertTrue(len(car_params.lateralTuning.indi.outerLoopGainV))

@ -115,8 +115,8 @@ class TestCarModel(unittest.TestCase):
tuning = self.CP.lateralTuning.which() tuning = self.CP.lateralTuning.which()
if tuning == 'pid': if tuning == 'pid':
self.assertTrue(len(self.CP.lateralTuning.pid.kpV)) self.assertTrue(len(self.CP.lateralTuning.pid.kpV))
elif tuning == 'lqr': elif tuning == 'torque':
self.assertTrue(len(self.CP.lateralTuning.lqr.a)) self.assertTrue(self.CP.lateralTuning.torque.kf > 0)
elif tuning == 'indi': elif tuning == 'indi':
self.assertTrue(len(self.CP.lateralTuning.indi.outerLoopGainV)) self.assertTrue(len(self.CP.lateralTuning.indi.outerLoopGainV))
else: else:

@ -14,6 +14,7 @@ VisualAlert = car.CarControl.HUDControl.VisualAlert
class CarController: class CarController:
def __init__(self, dbc_name, CP, VM): def __init__(self, dbc_name, CP, VM):
self.CP = CP self.CP = CP
self.torque_rate_limits = CarControllerParams(self.CP)
self.frame = 0 self.frame = 0
self.last_steer = 0 self.last_steer = 0
self.alert_active = False self.alert_active = False
@ -50,7 +51,7 @@ class CarController:
# steer torque # steer torque
new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX)) new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX))
apply_steer = apply_toyota_steer_torque_limits(new_steer, self.last_steer, CS.out.steeringTorqueEps, CarControllerParams) apply_steer = apply_toyota_steer_torque_limits(new_steer, self.last_steer, CS.out.steeringTorqueEps, self.torque_rate_limits)
self.steer_rate_limited = new_steer != apply_steer self.steer_rate_limited = new_steer != apply_steer
# Cut steering while we're in a known fault state (2s) # Cut steering while we're in a known fault state (2s)

@ -34,7 +34,6 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 15.74 # unknown end-to-end spec ret.steerRatio = 15.74 # unknown end-to-end spec
tire_stiffness_factor = 0.6371 # hand-tune tire_stiffness_factor = 0.6371 # hand-tune
ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.INDI_PRIUS) set_lat_tune(ret.lateralTuning, LatTunes.INDI_PRIUS)
ret.steerActuatorDelay = 0.3 ret.steerActuatorDelay = 0.3
@ -44,7 +43,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 17.4 ret.steerRatio = 17.4
tire_stiffness_factor = 0.5533 tire_stiffness_factor = 0.5533
ret.mass = 4387. * CV.LB_TO_KG + STD_CARGO_KG ret.mass = 4387. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.LQR_RAV4) set_lat_tune(ret.lateralTuning, LatTunes.TORQUE)
elif candidate in (CAR.RAV4, CAR.RAV4H): elif candidate in (CAR.RAV4, CAR.RAV4H):
stop_and_go = True if (candidate in CAR.RAV4H) else False stop_and_go = True if (candidate in CAR.RAV4H) else False
@ -52,7 +51,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 16.88 # 14.5 is spec end-to-end ret.steerRatio = 16.88 # 14.5 is spec end-to-end
tire_stiffness_factor = 0.5533 tire_stiffness_factor = 0.5533
ret.mass = 3650. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid ret.mass = 3650. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid
set_lat_tune(ret.lateralTuning, LatTunes.LQR_RAV4) set_lat_tune(ret.lateralTuning, LatTunes.TORQUE, MAX_TORQUE=2.5, FRICTION=0.06)
elif candidate == CAR.COROLLA: elif candidate == CAR.COROLLA:
ret.wheelbase = 2.70 ret.wheelbase = 2.70
@ -133,7 +132,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 13.9 ret.steerRatio = 13.9
tire_stiffness_factor = 0.444 # not optimized yet tire_stiffness_factor = 0.444 # not optimized yet
ret.mass = 3060. * CV.LB_TO_KG + STD_CARGO_KG ret.mass = 3060. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.PID_D) set_lat_tune(ret.lateralTuning, LatTunes.TORQUE, MAX_TORQUE=3.0, FRICTION=0.08)
elif candidate in (CAR.LEXUS_ES_TSS2, CAR.LEXUS_ESH_TSS2, CAR.LEXUS_ESH): elif candidate in (CAR.LEXUS_ES_TSS2, CAR.LEXUS_ESH_TSS2, CAR.LEXUS_ESH):
stop_and_go = True stop_and_go = True

@ -24,6 +24,7 @@ class LatTunes(Enum):
PID_L = 13 PID_L = 13
PID_M = 14 PID_M = 14
PID_N = 15 PID_N = 15
TORQUE = 16
###### LONG ###### ###### LONG ######
@ -49,8 +50,15 @@ def set_long_tune(tune, name):
###### LAT ###### ###### LAT ######
def set_lat_tune(tune, name): def set_lat_tune(tune, name, MAX_TORQUE=2.5, FRICTION=.1):
if name == LatTunes.INDI_PRIUS: if name == LatTunes.TORQUE:
tune.init('torque')
tune.torque.useSteeringAngle = True
tune.torque.kp = 2.0 / MAX_TORQUE
tune.torque.kf = 1.0 / MAX_TORQUE
tune.torque.ki = 0.5 / MAX_TORQUE
tune.torque.friction = FRICTION
elif name == LatTunes.INDI_PRIUS:
tune.init('indi') tune.init('indi')
tune.indi.innerLoopGainBP = [0.] tune.indi.innerLoopGainBP = [0.]
tune.indi.innerLoopGainV = [4.0] tune.indi.innerLoopGainV = [4.0]
@ -60,18 +68,6 @@ def set_lat_tune(tune, name):
tune.indi.timeConstantV = [1.0] tune.indi.timeConstantV = [1.0]
tune.indi.actuatorEffectivenessBP = [0.] tune.indi.actuatorEffectivenessBP = [0.]
tune.indi.actuatorEffectivenessV = [1.0] tune.indi.actuatorEffectivenessV = [1.0]
elif name == LatTunes.LQR_RAV4:
tune.init('lqr')
tune.lqr.scale = 1500.0
tune.lqr.ki = 0.05
tune.lqr.a = [0., 1., -0.22619643, 1.21822268]
tune.lqr.b = [-1.92006585e-04, 3.95603032e-05]
tune.lqr.c = [1., 0.]
tune.lqr.k = [-110.73572306, 451.22718255]
tune.lqr.l = [0.3233671, 0.3185757]
tune.lqr.dcGain = 0.002237852961363602
elif 'PID' in str(name): elif 'PID' in str(name):
tune.init('pid') tune.init('pid')
tune.pid.kiBP = [0.0] tune.pid.kiBP = [0.0]

@ -18,10 +18,16 @@ class CarControllerParams:
ACCEL_MIN = -3.5 # m/s2 ACCEL_MIN = -3.5 # m/s2
STEER_MAX = 1500 STEER_MAX = 1500
STEER_DELTA_UP = 10 # 1.5s time to peak torque
STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor
def __init__(self, CP):
if CP.lateralTuning.which == 'torque':
self.STEER_DELTA_UP = 15 # 1.0s time to peak torque
self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
else:
self.STEER_DELTA_UP = 10 # 1.5s time to peak torque
self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
class ToyotaFlags(IntFlag): class ToyotaFlags(IntFlag):
HYBRID = 1 HYBRID = 1

@ -20,8 +20,8 @@ from selfdrive.controls.lib.drive_helpers import get_lag_adjusted_curvature
from selfdrive.controls.lib.longcontrol import LongControl from selfdrive.controls.lib.longcontrol import LongControl
from selfdrive.controls.lib.latcontrol_pid import LatControlPID from selfdrive.controls.lib.latcontrol_pid import LatControlPID
from selfdrive.controls.lib.latcontrol_indi import LatControlINDI from selfdrive.controls.lib.latcontrol_indi import LatControlINDI
from selfdrive.controls.lib.latcontrol_lqr import LatControlLQR
from selfdrive.controls.lib.latcontrol_angle import LatControlAngle from selfdrive.controls.lib.latcontrol_angle import LatControlAngle
from selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from selfdrive.controls.lib.events import Events, ET from selfdrive.controls.lib.events import Events, ET
from selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert from selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert
from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.controls.lib.vehicle_model import VehicleModel
@ -144,8 +144,8 @@ class Controls:
self.LaC = LatControlPID(self.CP, self.CI) self.LaC = LatControlPID(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'indi': elif self.CP.lateralTuning.which() == 'indi':
self.LaC = LatControlINDI(self.CP, self.CI) self.LaC = LatControlINDI(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'lqr': elif self.CP.lateralTuning.which() == 'torque':
self.LaC = LatControlLQR(self.CP, self.CI) self.LaC = LatControlTorque(self.CP, self.CI)
self.initialized = False self.initialized = False
self.state = State.disabled self.state = State.disabled
@ -566,7 +566,7 @@ class Controls:
lat_plan.curvatureRates) lat_plan.curvatureRates)
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.CP, self.VM, actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.CP, self.VM,
params, self.last_actuators, desired_curvature, params, self.last_actuators, desired_curvature,
desired_curvature_rate) desired_curvature_rate, self.sm['liveLocationKalman'])
else: else:
lac_log = log.ControlsState.LateralDebugState.new_message() lac_log = log.ControlsState.LateralDebugState.new_message()
if self.sm.rcv_frame['testJoystick'] > 0: if self.sm.rcv_frame['testJoystick'] > 0:
@ -730,8 +730,8 @@ class Controls:
controlsState.lateralControlState.angleState = lac_log controlsState.lateralControlState.angleState = lac_log
elif lat_tuning == 'pid': elif lat_tuning == 'pid':
controlsState.lateralControlState.pidState = lac_log controlsState.lateralControlState.pidState = lac_log
elif lat_tuning == 'lqr': elif lat_tuning == 'torque':
controlsState.lateralControlState.lqrState = lac_log controlsState.lateralControlState.torqueState = lac_log
elif lat_tuning == 'indi': elif lat_tuning == 'indi':
controlsState.lateralControlState.indiState = lac_log controlsState.lateralControlState.indiState = lac_log

@ -16,7 +16,7 @@ class LatControl(ABC):
self.steer_max = 1.0 self.steer_max = 1.0
@abstractmethod @abstractmethod
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pass pass
def reset(self): def reset(self):

@ -7,7 +7,7 @@ STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
class LatControlAngle(LatControl): class LatControlAngle(LatControl):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
angle_log = log.ControlsState.LateralAngleState.new_message() angle_log = log.ControlsState.LateralAngleState.new_message()
if CS.vEgo < MIN_STEER_SPEED or not active: if CS.vEgo < MIN_STEER_SPEED or not active:

@ -63,7 +63,7 @@ class LatControlINDI(LatControl):
self.steer_filter.x = 0. self.steer_filter.x = 0.
self.speed = 0. self.speed = 0.
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
self.speed = CS.vEgo self.speed = CS.vEgo
# Update Kalman filter # Update Kalman filter
y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]]) y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]])

@ -1,84 +0,0 @@
import math
import numpy as np
from common.numpy_fast import clip
from common.realtime import DT_CTRL
from cereal import log
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
class LatControlLQR(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.scale = CP.lateralTuning.lqr.scale
self.ki = CP.lateralTuning.lqr.ki
self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2))
self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1))
self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2))
self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2))
self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1))
self.dc_gain = CP.lateralTuning.lqr.dcGain
self.x_hat = np.array([[0], [0]])
self.i_unwind_rate = 0.3 * DT_CTRL
self.i_rate = 1.0 * DT_CTRL
self.reset()
def reset(self):
super().reset()
self.i_lqr = 0.0
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
lqr_log = log.ControlsState.LateralLQRState.new_message()
torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed
# Subtract offset. Zero angle should correspond to zero torque
steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg
desired_angle += instant_offset # Only add offset that originates from vehicle model errors
lqr_log.steeringAngleDesiredDeg = desired_angle
# Update Kalman filter
angle_steers_k = float(self.C.dot(self.x_hat))
e = steering_angle_no_offset - angle_steers_k
self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e)
if CS.vEgo < MIN_STEER_SPEED or not active:
lqr_log.active = False
lqr_output = 0.
output_steer = 0.
self.reset()
else:
lqr_log.active = True
# LQR
u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat))
lqr_output = torque_scale * u_lqr / self.scale
# Integrator
if CS.steeringPressed:
self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr))
else:
error = desired_angle - angle_steers_k
i = self.i_lqr + self.ki * self.i_rate * error
control = lqr_output + i
if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \
(error <= 0 and (control >= -self.steer_max or i > 0.0)):
self.i_lqr = i
output_steer = lqr_output + self.i_lqr
output_steer = clip(output_steer, -self.steer_max, self.steer_max)
lqr_log.steeringAngleDeg = angle_steers_k
lqr_log.i = self.i_lqr
lqr_log.output = output_steer
lqr_log.lqrOutput = lqr_output
lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
return output_steer, desired_angle, lqr_log

@ -17,7 +17,7 @@ class LatControlPID(LatControl):
super().reset() super().reset()
self.pid.reset() self.pid.reset()
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate): def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pid_log = log.ControlsState.LateralPIDState.new_message() pid_log = log.ControlsState.LateralPIDState.new_message()
pid_log.steeringAngleDeg = float(CS.steeringAngleDeg) pid_log.steeringAngleDeg = float(CS.steeringAngleDeg)
pid_log.steeringRateDeg = float(CS.steeringRateDeg) pid_log.steeringRateDeg = float(CS.steeringRateDeg)

@ -0,0 +1,79 @@
import math
from selfdrive.controls.lib.pid import PIDController
from common.numpy_fast import interp
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from cereal import log
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_FACTOR = 200
JERK_THRESHOLD = 0.2
class LatControlTorque(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki,
k_f=CP.lateralTuning.torque.kf, pos_limit=1.0, neg_limit=-1.0)
self.get_steer_feedforward = CI.get_steer_feedforward_function()
self.steer_max = 1.0
self.pid.pos_limit = self.steer_max
self.pid.neg_limit = -self.steer_max
self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle
self.friction = CP.lateralTuning.torque.friction
def reset(self):
super().reset()
self.pid.reset()
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pid_log = log.ControlsState.LateralTorqueState.new_message()
if CS.vEgo < MIN_STEER_SPEED or not active:
output_torque = 0.0
pid_log.active = False
self.pid.reset()
else:
if self.use_steering_angle:
actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
else:
actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo
desired_lateral_accel = desired_curvature * CS.vEgo**2
desired_lateral_jerk = desired_curvature_rate * CS.vEgo**2
actual_lateral_accel = actual_curvature * CS.vEgo**2
setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature
measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature
error = setpoint - measurement
pid_log.error = error
ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
output_torque = self.pid.update(error,
override=CS.steeringPressed, feedforward=ff,
speed=CS.vEgo,
freeze_integrator=CS.steeringRateLimited)
friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction])
output_torque += friction_compensation
pid_log.active = True
pid_log.p = self.pid.p
pid_log.i = self.pid.i
pid_log.d = self.pid.d
pid_log.f = self.pid.f
pid_log.output = -output_torque
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS)
#TODO left is positive in this convention
return -output_torque, 0.0, pid_log

@ -9,7 +9,7 @@ from selfdrive.car.honda.values import CAR as HONDA
from selfdrive.car.toyota.values import CAR as TOYOTA from selfdrive.car.toyota.values import CAR as TOYOTA
from selfdrive.car.nissan.values import CAR as NISSAN from selfdrive.car.nissan.values import CAR as NISSAN
from selfdrive.controls.lib.latcontrol_pid import LatControlPID from selfdrive.controls.lib.latcontrol_pid import LatControlPID
from selfdrive.controls.lib.latcontrol_lqr import LatControlLQR from selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from selfdrive.controls.lib.latcontrol_indi import LatControlINDI from selfdrive.controls.lib.latcontrol_indi import LatControlINDI
from selfdrive.controls.lib.latcontrol_angle import LatControlAngle from selfdrive.controls.lib.latcontrol_angle import LatControlAngle
from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.controls.lib.vehicle_model import VehicleModel
@ -17,7 +17,7 @@ from selfdrive.controls.lib.vehicle_model import VehicleModel
class TestLatControl(unittest.TestCase): class TestLatControl(unittest.TestCase):
@parameterized.expand([(HONDA.CIVIC, LatControlPID), (TOYOTA.RAV4, LatControlLQR), (TOYOTA.PRIUS, LatControlINDI), (NISSAN.LEAF, LatControlAngle)]) @parameterized.expand([(HONDA.CIVIC, LatControlPID), (TOYOTA.RAV4, LatControlTorque), (TOYOTA.PRIUS, LatControlINDI), (NISSAN.LEAF, LatControlAngle)])
def test_saturation(self, car_name, controller): def test_saturation(self, car_name, controller):
CarInterface, CarController, CarState = interfaces[car_name] CarInterface, CarController, CarState = interfaces[car_name]
CP = CarInterface.get_params(car_name) CP = CarInterface.get_params(car_name)

@ -1 +1 @@
22356d49a926a62c01d698d77c1f323016b68fd8 185f5f9c8d878ad4b98664afc7147400476208cc
Loading…
Cancel
Save