Lateral torque-based control with roll on TSS2 corolla and TSSP rav4 (#24260)

* Initial commit

* Fix bugs

* Need more torque rate

* Cleanup cray cray control

* Write nicely

* Chiiil

* Not relevant for cray cray control

* Do some logging

* Seems like it has more torque than I thought

* Bit more feedforward

* Tune change

* Retune

* Retune

* Little more chill

* Add coroll

* Add corolla

* Give craycray a good name

* Update to proper logging

* D to the PI

* Should be in radians

* Add d

* Start oscillations

* Add D term

* Only change torque rate limits for new tune

* Add d logging

* Should be enough

* Wrong sign in D

* Downtune a little

* Needed to prevent faults

* Add lqr rav4 to tune

* Try derivative again

* Data based retune

* Data based retune

* add friction compensation

* Doesnt need too much P with friction comp

* remove lqr

* Remove kd

* Fix tests

* fix tests

* Too much error

* Get roll induced error under 1cm/deg

* Too much jitter

* Do roll comp

* Add ki

* Final update

* Update refs

* Cleanup latcontrol_torque a little more
pull/24265/head
HaraldSchafer 3 years ago committed by GitHub
parent 6877059b45
commit fe0bcdaef6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      release/files_common
  2. 4
      selfdrive/car/tests/test_car_interfaces.py
  3. 4
      selfdrive/car/tests/test_models.py
  4. 3
      selfdrive/car/toyota/carcontroller.py
  5. 7
      selfdrive/car/toyota/interface.py
  6. 24
      selfdrive/car/toyota/tunes.py
  7. 10
      selfdrive/car/toyota/values.py
  8. 12
      selfdrive/controls/controlsd.py
  9. 2
      selfdrive/controls/lib/latcontrol.py
  10. 2
      selfdrive/controls/lib/latcontrol_angle.py
  11. 2
      selfdrive/controls/lib/latcontrol_indi.py
  12. 84
      selfdrive/controls/lib/latcontrol_lqr.py
  13. 2
      selfdrive/controls/lib/latcontrol_pid.py
  14. 79
      selfdrive/controls/lib/latcontrol_torque.py
  15. 4
      selfdrive/controls/lib/tests/test_latcontrol.py
  16. 2
      selfdrive/test/process_replay/ref_commit

@ -238,7 +238,7 @@ selfdrive/controls/lib/events.py
selfdrive/controls/lib/lane_planner.py
selfdrive/controls/lib/latcontrol_angle.py
selfdrive/controls/lib/latcontrol_indi.py
selfdrive/controls/lib/latcontrol_lqr.py
selfdrive/controls/lib/latcontrol_torque.py
selfdrive/controls/lib/latcontrol_pid.py
selfdrive/controls/lib/latcontrol.py
selfdrive/controls/lib/lateral_planner.py

@ -38,8 +38,8 @@ class TestCarInterfaces(unittest.TestCase):
tuning = car_params.lateralTuning.which()
if tuning == 'pid':
self.assertTrue(len(car_params.lateralTuning.pid.kpV))
elif tuning == 'lqr':
self.assertTrue(len(car_params.lateralTuning.lqr.a))
elif tuning == 'torque':
self.assertTrue(car_params.lateralTuning.torque.kf > 0)
elif tuning == 'indi':
self.assertTrue(len(car_params.lateralTuning.indi.outerLoopGainV))

@ -115,8 +115,8 @@ class TestCarModel(unittest.TestCase):
tuning = self.CP.lateralTuning.which()
if tuning == 'pid':
self.assertTrue(len(self.CP.lateralTuning.pid.kpV))
elif tuning == 'lqr':
self.assertTrue(len(self.CP.lateralTuning.lqr.a))
elif tuning == 'torque':
self.assertTrue(self.CP.lateralTuning.torque.kf > 0)
elif tuning == 'indi':
self.assertTrue(len(self.CP.lateralTuning.indi.outerLoopGainV))
else:

@ -14,6 +14,7 @@ VisualAlert = car.CarControl.HUDControl.VisualAlert
class CarController:
def __init__(self, dbc_name, CP, VM):
self.CP = CP
self.torque_rate_limits = CarControllerParams(self.CP)
self.frame = 0
self.last_steer = 0
self.alert_active = False
@ -50,7 +51,7 @@ class CarController:
# steer torque
new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX))
apply_steer = apply_toyota_steer_torque_limits(new_steer, self.last_steer, CS.out.steeringTorqueEps, CarControllerParams)
apply_steer = apply_toyota_steer_torque_limits(new_steer, self.last_steer, CS.out.steeringTorqueEps, self.torque_rate_limits)
self.steer_rate_limited = new_steer != apply_steer
# Cut steering while we're in a known fault state (2s)

@ -34,7 +34,6 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 15.74 # unknown end-to-end spec
tire_stiffness_factor = 0.6371 # hand-tune
ret.mass = 3045. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.INDI_PRIUS)
ret.steerActuatorDelay = 0.3
@ -44,7 +43,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 17.4
tire_stiffness_factor = 0.5533
ret.mass = 4387. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.LQR_RAV4)
set_lat_tune(ret.lateralTuning, LatTunes.TORQUE)
elif candidate in (CAR.RAV4, CAR.RAV4H):
stop_and_go = True if (candidate in CAR.RAV4H) else False
@ -52,7 +51,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 16.88 # 14.5 is spec end-to-end
tire_stiffness_factor = 0.5533
ret.mass = 3650. * CV.LB_TO_KG + STD_CARGO_KG # mean between normal and hybrid
set_lat_tune(ret.lateralTuning, LatTunes.LQR_RAV4)
set_lat_tune(ret.lateralTuning, LatTunes.TORQUE, MAX_TORQUE=2.5, FRICTION=0.06)
elif candidate == CAR.COROLLA:
ret.wheelbase = 2.70
@ -133,7 +132,7 @@ class CarInterface(CarInterfaceBase):
ret.steerRatio = 13.9
tire_stiffness_factor = 0.444 # not optimized yet
ret.mass = 3060. * CV.LB_TO_KG + STD_CARGO_KG
set_lat_tune(ret.lateralTuning, LatTunes.PID_D)
set_lat_tune(ret.lateralTuning, LatTunes.TORQUE, MAX_TORQUE=3.0, FRICTION=0.08)
elif candidate in (CAR.LEXUS_ES_TSS2, CAR.LEXUS_ESH_TSS2, CAR.LEXUS_ESH):
stop_and_go = True

@ -24,6 +24,7 @@ class LatTunes(Enum):
PID_L = 13
PID_M = 14
PID_N = 15
TORQUE = 16
###### LONG ######
@ -49,8 +50,15 @@ def set_long_tune(tune, name):
###### LAT ######
def set_lat_tune(tune, name):
if name == LatTunes.INDI_PRIUS:
def set_lat_tune(tune, name, MAX_TORQUE=2.5, FRICTION=.1):
if name == LatTunes.TORQUE:
tune.init('torque')
tune.torque.useSteeringAngle = True
tune.torque.kp = 2.0 / MAX_TORQUE
tune.torque.kf = 1.0 / MAX_TORQUE
tune.torque.ki = 0.5 / MAX_TORQUE
tune.torque.friction = FRICTION
elif name == LatTunes.INDI_PRIUS:
tune.init('indi')
tune.indi.innerLoopGainBP = [0.]
tune.indi.innerLoopGainV = [4.0]
@ -60,18 +68,6 @@ def set_lat_tune(tune, name):
tune.indi.timeConstantV = [1.0]
tune.indi.actuatorEffectivenessBP = [0.]
tune.indi.actuatorEffectivenessV = [1.0]
elif name == LatTunes.LQR_RAV4:
tune.init('lqr')
tune.lqr.scale = 1500.0
tune.lqr.ki = 0.05
tune.lqr.a = [0., 1., -0.22619643, 1.21822268]
tune.lqr.b = [-1.92006585e-04, 3.95603032e-05]
tune.lqr.c = [1., 0.]
tune.lqr.k = [-110.73572306, 451.22718255]
tune.lqr.l = [0.3233671, 0.3185757]
tune.lqr.dcGain = 0.002237852961363602
elif 'PID' in str(name):
tune.init('pid')
tune.pid.kiBP = [0.0]

@ -18,10 +18,16 @@ class CarControllerParams:
ACCEL_MIN = -3.5 # m/s2
STEER_MAX = 1500
STEER_DELTA_UP = 10 # 1.5s time to peak torque
STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor
def __init__(self, CP):
if CP.lateralTuning.which == 'torque':
self.STEER_DELTA_UP = 15 # 1.0s time to peak torque
self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
else:
self.STEER_DELTA_UP = 10 # 1.5s time to peak torque
self.STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50)
class ToyotaFlags(IntFlag):
HYBRID = 1

@ -20,8 +20,8 @@ from selfdrive.controls.lib.drive_helpers import get_lag_adjusted_curvature
from selfdrive.controls.lib.longcontrol import LongControl
from selfdrive.controls.lib.latcontrol_pid import LatControlPID
from selfdrive.controls.lib.latcontrol_indi import LatControlINDI
from selfdrive.controls.lib.latcontrol_lqr import LatControlLQR
from selfdrive.controls.lib.latcontrol_angle import LatControlAngle
from selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from selfdrive.controls.lib.events import Events, ET
from selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert
from selfdrive.controls.lib.vehicle_model import VehicleModel
@ -144,8 +144,8 @@ class Controls:
self.LaC = LatControlPID(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'indi':
self.LaC = LatControlINDI(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'lqr':
self.LaC = LatControlLQR(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'torque':
self.LaC = LatControlTorque(self.CP, self.CI)
self.initialized = False
self.state = State.disabled
@ -566,7 +566,7 @@ class Controls:
lat_plan.curvatureRates)
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.CP, self.VM,
params, self.last_actuators, desired_curvature,
desired_curvature_rate)
desired_curvature_rate, self.sm['liveLocationKalman'])
else:
lac_log = log.ControlsState.LateralDebugState.new_message()
if self.sm.rcv_frame['testJoystick'] > 0:
@ -730,8 +730,8 @@ class Controls:
controlsState.lateralControlState.angleState = lac_log
elif lat_tuning == 'pid':
controlsState.lateralControlState.pidState = lac_log
elif lat_tuning == 'lqr':
controlsState.lateralControlState.lqrState = lac_log
elif lat_tuning == 'torque':
controlsState.lateralControlState.torqueState = lac_log
elif lat_tuning == 'indi':
controlsState.lateralControlState.indiState = lac_log

@ -16,7 +16,7 @@ class LatControl(ABC):
self.steer_max = 1.0
@abstractmethod
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pass
def reset(self):

@ -7,7 +7,7 @@ STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
class LatControlAngle(LatControl):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
angle_log = log.ControlsState.LateralAngleState.new_message()
if CS.vEgo < MIN_STEER_SPEED or not active:

@ -63,7 +63,7 @@ class LatControlINDI(LatControl):
self.steer_filter.x = 0.
self.speed = 0.
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
self.speed = CS.vEgo
# Update Kalman filter
y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]])

@ -1,84 +0,0 @@
import math
import numpy as np
from common.numpy_fast import clip
from common.realtime import DT_CTRL
from cereal import log
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
class LatControlLQR(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.scale = CP.lateralTuning.lqr.scale
self.ki = CP.lateralTuning.lqr.ki
self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2))
self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1))
self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2))
self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2))
self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1))
self.dc_gain = CP.lateralTuning.lqr.dcGain
self.x_hat = np.array([[0], [0]])
self.i_unwind_rate = 0.3 * DT_CTRL
self.i_rate = 1.0 * DT_CTRL
self.reset()
def reset(self):
super().reset()
self.i_lqr = 0.0
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
lqr_log = log.ControlsState.LateralLQRState.new_message()
torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed
# Subtract offset. Zero angle should correspond to zero torque
steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg
desired_angle += instant_offset # Only add offset that originates from vehicle model errors
lqr_log.steeringAngleDesiredDeg = desired_angle
# Update Kalman filter
angle_steers_k = float(self.C.dot(self.x_hat))
e = steering_angle_no_offset - angle_steers_k
self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e)
if CS.vEgo < MIN_STEER_SPEED or not active:
lqr_log.active = False
lqr_output = 0.
output_steer = 0.
self.reset()
else:
lqr_log.active = True
# LQR
u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat))
lqr_output = torque_scale * u_lqr / self.scale
# Integrator
if CS.steeringPressed:
self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr))
else:
error = desired_angle - angle_steers_k
i = self.i_lqr + self.ki * self.i_rate * error
control = lqr_output + i
if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \
(error <= 0 and (control >= -self.steer_max or i > 0.0)):
self.i_lqr = i
output_steer = lqr_output + self.i_lqr
output_steer = clip(output_steer, -self.steer_max, self.steer_max)
lqr_log.steeringAngleDeg = angle_steers_k
lqr_log.i = self.i_lqr
lqr_log.output = output_steer
lqr_log.lqrOutput = lqr_output
lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
return output_steer, desired_angle, lqr_log

@ -17,7 +17,7 @@ class LatControlPID(LatControl):
super().reset()
self.pid.reset()
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pid_log = log.ControlsState.LateralPIDState.new_message()
pid_log.steeringAngleDeg = float(CS.steeringAngleDeg)
pid_log.steeringRateDeg = float(CS.steeringRateDeg)

@ -0,0 +1,79 @@
import math
from selfdrive.controls.lib.pid import PIDController
from common.numpy_fast import interp
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
from cereal import log
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_FACTOR = 200
JERK_THRESHOLD = 0.2
class LatControlTorque(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki,
k_f=CP.lateralTuning.torque.kf, pos_limit=1.0, neg_limit=-1.0)
self.get_steer_feedforward = CI.get_steer_feedforward_function()
self.steer_max = 1.0
self.pid.pos_limit = self.steer_max
self.pid.neg_limit = -self.steer_max
self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle
self.friction = CP.lateralTuning.torque.friction
def reset(self):
super().reset()
self.pid.reset()
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pid_log = log.ControlsState.LateralTorqueState.new_message()
if CS.vEgo < MIN_STEER_SPEED or not active:
output_torque = 0.0
pid_log.active = False
self.pid.reset()
else:
if self.use_steering_angle:
actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
else:
actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo
desired_lateral_accel = desired_curvature * CS.vEgo**2
desired_lateral_jerk = desired_curvature_rate * CS.vEgo**2
actual_lateral_accel = actual_curvature * CS.vEgo**2
setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature
measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature
error = setpoint - measurement
pid_log.error = error
ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
output_torque = self.pid.update(error,
override=CS.steeringPressed, feedforward=ff,
speed=CS.vEgo,
freeze_integrator=CS.steeringRateLimited)
friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction])
output_torque += friction_compensation
pid_log.active = True
pid_log.p = self.pid.p
pid_log.i = self.pid.i
pid_log.d = self.pid.d
pid_log.f = self.pid.f
pid_log.output = -output_torque
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS)
#TODO left is positive in this convention
return -output_torque, 0.0, pid_log

@ -9,7 +9,7 @@ from selfdrive.car.honda.values import CAR as HONDA
from selfdrive.car.toyota.values import CAR as TOYOTA
from selfdrive.car.nissan.values import CAR as NISSAN
from selfdrive.controls.lib.latcontrol_pid import LatControlPID
from selfdrive.controls.lib.latcontrol_lqr import LatControlLQR
from selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from selfdrive.controls.lib.latcontrol_indi import LatControlINDI
from selfdrive.controls.lib.latcontrol_angle import LatControlAngle
from selfdrive.controls.lib.vehicle_model import VehicleModel
@ -17,7 +17,7 @@ from selfdrive.controls.lib.vehicle_model import VehicleModel
class TestLatControl(unittest.TestCase):
@parameterized.expand([(HONDA.CIVIC, LatControlPID), (TOYOTA.RAV4, LatControlLQR), (TOYOTA.PRIUS, LatControlINDI), (NISSAN.LEAF, LatControlAngle)])
@parameterized.expand([(HONDA.CIVIC, LatControlPID), (TOYOTA.RAV4, LatControlTorque), (TOYOTA.PRIUS, LatControlINDI), (NISSAN.LEAF, LatControlAngle)])
def test_saturation(self, car_name, controller):
CarInterface, CarController, CarState = interfaces[car_name]
CP = CarInterface.get_params(car_name)

@ -1 +1 @@
22356d49a926a62c01d698d77c1f323016b68fd8
185f5f9c8d878ad4b98664afc7147400476208cc
Loading…
Cancel
Save