Controlsd refactor (#1487)

* it's a class

* more refactor

* remove that

* car interface should create that

* that too

* not a dict

* don't create permanent events every iteration

* break up long lines

* fix honda

* small optimization

* less long lines

* dict is faster

* latcontrol less args

* longcontrol less args

* update profiling script

* few optimizations

* create events together

* clean up

* more clean up

* remove comment

* clean up

* simplify state transition

* more clean up

* update comments
old-commit-hash: 08832ff29d
commatwo_master
Adeeb 5 years ago committed by GitHub
parent e8ae840fa7
commit fe106e25a3
  1. 5
      selfdrive/car/interfaces.py
  2. 811
      selfdrive/controls/controlsd.py
  3. 10
      selfdrive/controls/lib/latcontrol_indi.py
  4. 20
      selfdrive/controls/lib/latcontrol_lqr.py
  5. 18
      selfdrive/controls/lib/latcontrol_pid.py
  6. 20
      selfdrive/controls/lib/longcontrol.py
  7. 2
      selfdrive/test/profiling/controlsd.py

@ -4,6 +4,7 @@ from cereal import car
from common.kalman.simple_kalman import KF1D from common.kalman.simple_kalman import KF1D
from common.realtime import DT_CTRL from common.realtime import DT_CTRL
from selfdrive.car import gen_empty_fingerprint from selfdrive.car import gen_empty_fingerprint
from selfdrive.config import Conversions as CV
from selfdrive.controls.lib.drive_helpers import EventTypes as ET, create_event from selfdrive.controls.lib.drive_helpers import EventTypes as ET, create_event
from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.controls.lib.vehicle_model import VehicleModel
@ -96,6 +97,10 @@ class CarInterfaceBase():
events.append(create_event('espDisabled', [ET.NO_ENTRY, ET.SOFT_DISABLE])) events.append(create_event('espDisabled', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if cs_out.gasPressed: if cs_out.gasPressed:
events.append(create_event('pedalPressed', [ET.PRE_ENABLE])) events.append(create_event('pedalPressed', [ET.PRE_ENABLE]))
if cs_out.stockAeb:
events.append(create_event('stockAeb', []))
if cs_out.vEgo > 92 * CV.MPH_TO_MS:
events.append(create_event('speedTooHigh', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if cs_out.steerError: if cs_out.steerError:
events.append(create_event('steerUnavailable', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE, ET.PERMANENT])) events.append(create_event('steerUnavailable', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE, ET.PERMANENT]))

@ -26,6 +26,7 @@ from selfdrive.controls.lib.vehicle_model import VehicleModel
from selfdrive.controls.lib.planner import LON_MPC_STEP from selfdrive.controls.lib.planner import LON_MPC_STEP
from selfdrive.locationd.calibration_helpers import Calibration, Filter from selfdrive.locationd.calibration_helpers import Calibration, Filter
LDW_MIN_SPEED = 31 * CV.MPH_TO_MS
LANE_DEPARTURE_THRESHOLD = 0.1 LANE_DEPARTURE_THRESHOLD = 0.1
STEER_ANGLE_SATURATION_TIMEOUT = 1.0 / DT_CTRL STEER_ANGLE_SATURATION_TIMEOUT = 1.0 / DT_CTRL
STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
@ -33,30 +34,12 @@ STEER_ANGLE_SATURATION_THRESHOLD = 2.5 # Degrees
ThermalStatus = log.ThermalData.ThermalStatus ThermalStatus = log.ThermalData.ThermalStatus
State = log.ControlsState.OpenpilotState State = log.ControlsState.OpenpilotState
HwType = log.HealthData.HwType HwType = log.HealthData.HwType
LongitudinalPlanSource = log.Plan.LongitudinalPlanSource
Desire = log.PathPlan.Desire
LaneChangeState = log.PathPlan.LaneChangeState LaneChangeState = log.PathPlan.LaneChangeState
LaneChangeDirection = log.PathPlan.LaneChangeDirection LaneChangeDirection = log.PathPlan.LaneChangeDirection
def add_lane_change_event(events, path_plan):
if path_plan.laneChangeState == LaneChangeState.preLaneChange:
if path_plan.laneChangeDirection == LaneChangeDirection.left:
events.append(create_event('preLaneChangeLeft', [ET.WARNING]))
else:
events.append(create_event('preLaneChangeRight', [ET.WARNING]))
elif path_plan.laneChangeState in [LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing]:
events.append(create_event('laneChange', [ET.WARNING]))
def isActive(state):
"""Check if the actuators are enabled"""
return state in [State.enabled, State.softDisabling]
def isEnabled(state):
"""Check if openpilot is engaged"""
return (isActive(state) or state == State.preEnabled)
def events_to_bytes(events): def events_to_bytes(events):
# optimization when comparing capnp structs: str() or tree traverse are much slower # optimization when comparing capnp structs: str() or tree traverse are much slower
ret = [] ret = []
@ -69,540 +52,550 @@ def events_to_bytes(events):
return ret return ret
def data_sample(CI, CC, sm, can_sock, state, mismatch_counter, can_error_counter, params): class Controls:
"""Receive data from sockets and create events for battery, temperature and disk space""" def __init__(self, sm=None, pm=None, can_sock=None):
gc.disable()
set_realtime_priority(3)
# Setup sockets
self.pm = pm
if self.pm is None:
self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', \
'carControl', 'carEvents', 'carParams'])
# Update carstate from CAN and create events self.sm = sm
can_strs = messaging.drain_sock_raw(can_sock, wait_for_one=True) if self.sm is None:
CS = CI.update(CC, can_strs) self.sm = messaging.SubMaster(['thermal', 'health', 'model', 'liveCalibration', \
'dMonitoringState', 'plan', 'pathPlan'])
sm.update(0) self.can_sock = can_sock
if can_sock is None:
can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100
self.can_sock = messaging.sub_sock('can', timeout=can_timeout)
events = list(CS.events) # wait for one health and one CAN packet
events += list(sm['dMonitoringState'].events) hw_type = messaging.recv_one(self.sm.sock['health']).health.hwType
add_lane_change_event(events, sm['pathPlan']) has_relay = hw_type in [HwType.blackPanda, HwType.uno]
enabled = isEnabled(state) print("Waiting for CAN messages...")
messaging.get_one_can(self.can_sock)
# Check for CAN timeout self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], has_relay)
if not can_strs:
can_error_counter += 1
events.append(create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
overtemp = sm['thermal'].thermalStatus >= ThermalStatus.red # read params
free_space = sm['thermal'].freeSpace < 0.07 # under 7% of space free no enable allowed params = Params()
low_battery = sm['thermal'].batteryPercent < 1 and sm['thermal'].chargingError # at zero percent battery, while discharging, OP should not allowed self.is_metric = params.get("IsMetric", encoding='utf8') == "1"
mem_low = sm['thermal'].memUsedPercent > 90 self.is_ldw_enabled = params.get("IsLdwEnabled", encoding='utf8') == "1"
internet_needed = params.get("Offroad_ConnectivityNeeded", encoding='utf8') is not None
community_feature_toggle = params.get("CommunityFeaturesToggle", encoding='utf8') == "1"
openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle", encoding='utf8') == "1"
passive = params.get("Passive", encoding='utf8') == "1" or \
internet_needed or not openpilot_enabled_toggle
car_recognized = self.CP.carName != 'mock'
# If stock camera is disconnected, we loaded car controls and it's not dashcam mode
controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive
community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle
self.read_only = not car_recognized or not controller_available or \
self.CP.dashcamOnly or community_feature_disallowed
if self.read_only:
self.CP.safetyModel = car.CarParams.SafetyModel.noOutput
# Create events for battery, temperature and disk space # Write CarParams for radard and boardd safety mode
if low_battery: cp_bytes = self.CP.to_bytes()
params.put("CarParams", cp_bytes)
put_nonblocking("CarParamsCache", cp_bytes)
put_nonblocking("LongitudinalControl", "1" if self.CP.openpilotLongitudinalControl else "0")
self.CC = car.CarControl.new_message()
self.AM = AlertManager()
self.LoC = LongControl(self.CP, self.CI.compute_gb)
self.VM = VehicleModel(self.CP)
if self.CP.lateralTuning.which() == 'pid':
self.LaC = LatControlPID(self.CP)
elif self.CP.lateralTuning.which() == 'indi':
self.LaC = LatControlINDI(self.CP)
elif self.CP.lateralTuning.which() == 'lqr':
self.LaC = LatControlLQR(self.CP)
self.state = State.disabled
self.enabled = False
self.active = False
self.can_rcv_error = False
self.soft_disable_timer = 0
self.v_cruise_kph = 255
self.v_cruise_kph_last = 0
self.mismatch_counter = 0
self.can_error_counter = 0
self.last_blinker_frame = 0
self.saturated_count = 0
self.events_prev = ""
self.sm['liveCalibration'].calStatus = Calibration.INVALID
self.sm['pathPlan'].sensorValid = True
self.sm['pathPlan'].posenetValid = True
self.sm['thermal'].freeSpace = 1.
self.sm['dMonitoringState'].events = []
self.sm['dMonitoringState'].awarenessStatus = 1.
self.sm['dMonitoringState'].faceDetected = False
startup_alert = get_startup_alert(car_recognized, controller_available)
self.AM.add(self.sm.frame, startup_alert, False)
# controlsd is driven by can recv, expected at 100Hz
self.rk = Ratekeeper(100, print_delay_threshold=None)
self.prof = Profiler(False) # off by default
# detect sound card presence and ensure successful init
sounds_available = not os.path.isfile('/EON') or (os.path.isdir('/proc/asound/card0') \
and open('/proc/asound/card0/state').read().strip() == 'ONLINE')
self.static_events = []
if not sounds_available:
self.static_events.append(create_event('soundsUnavailable', [ET.NO_ENTRY, ET.PERMANENT]))
if internet_needed:
self.static_events.append(create_event('internetConnectivityNeeded', [ET.NO_ENTRY, ET.PERMANENT]))
if community_feature_disallowed:
self.static_events.append(create_event('communityFeatureDisallowed', [ET.PERMANENT]))
if self.read_only and not passive:
self.static_events.append(create_event('carUnrecognized', [ET.PERMANENT]))
def create_events(self, CS):
"""Compute carEvents from carState"""
events = self.static_events.copy()
events.extend(CS.events)
events.extend(self.sm['dMonitoringState'].events)
# Create events for battery, temperature, disk space, and memory
if self.sm['thermal'].batteryPercent < 1 and self.sm['thermal'].chargingError:
# at zero percent battery, while discharging, OP should not allowed
events.append(create_event('lowBattery', [ET.NO_ENTRY, ET.SOFT_DISABLE])) events.append(create_event('lowBattery', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if overtemp: if self.sm['thermal'].thermalStatus >= ThermalStatus.red:
events.append(create_event('overheat', [ET.NO_ENTRY, ET.SOFT_DISABLE])) events.append(create_event('overheat', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if free_space: if self.sm['thermal'].freeSpace < 0.07:
# under 7% of space free no enable allowed
events.append(create_event('outOfSpace', [ET.NO_ENTRY])) events.append(create_event('outOfSpace', [ET.NO_ENTRY]))
if mem_low: if self.sm['thermal'].memUsedPercent > 90:
events.append(create_event('lowMemory', [ET.NO_ENTRY, ET.SOFT_DISABLE, ET.PERMANENT])) events.append(create_event('lowMemory', [ET.NO_ENTRY, ET.SOFT_DISABLE, ET.PERMANENT]))
if CS.stockAeb: # Handle calibration status
events.append(create_event('stockAeb', [])) cal_status = self.sm['liveCalibration'].calStatus
# Handle calibration
cal_status = sm['liveCalibration'].calStatus
cal_perc = sm['liveCalibration'].calPerc
if cal_status != Calibration.CALIBRATED: if cal_status != Calibration.CALIBRATED:
if cal_status == Calibration.UNCALIBRATED: if cal_status == Calibration.UNCALIBRATED:
events.append(create_event('calibrationIncomplete', [ET.NO_ENTRY, ET.SOFT_DISABLE, ET.PERMANENT])) events.append(create_event('calibrationIncomplete', [ET.NO_ENTRY, ET.SOFT_DISABLE, ET.PERMANENT]))
else: else:
events.append(create_event('calibrationInvalid', [ET.NO_ENTRY, ET.SOFT_DISABLE])) events.append(create_event('calibrationInvalid', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if CS.vEgo > 92 * CV.MPH_TO_MS: # Handle lane change
events.append(create_event('speedTooHigh', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if self.sm['pathPlan'].laneChangeState == LaneChangeState.preLaneChange:
if self.sm['path_plan'].laneChangeDirection == LaneChangeDirection.left:
events.append(create_event('preLaneChangeLeft', [ET.WARNING]))
else:
events.append(create_event('preLaneChangeRight', [ET.WARNING]))
elif self.sm['pathPlan'].laneChangeState in [LaneChangeState.laneChangeStarting, \
LaneChangeState.laneChangeFinishing]:
events.append(create_event('laneChange', [ET.WARNING]))
if self.can_rcv_error:
events.append(create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if self.mismatch_counter >= 200:
events.append(create_event('controlsMismatch', [ET.IMMEDIATE_DISABLE]))
if not self.sm.alive['plan'] and self.sm.alive['pathPlan']:
# only plan not being received: radar not communicating
events.append(create_event('radarCommIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
elif not self.sm.all_alive_and_valid():
events.append(create_event('commIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if not self.sm['pathPlan'].mpcSolutionValid:
events.append(create_event('plannerError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if not self.sm['pathPlan'].sensorValid and os.getenv("NOSENSOR") is None:
events.append(create_event('sensorDataInvalid', [ET.NO_ENTRY, ET.PERMANENT]))
if not self.sm['pathPlan'].paramsValid:
events.append(create_event('vehicleModelInvalid', [ET.WARNING]))
if not self.sm['pathPlan'].posenetValid:
events.append(create_event('posenetInvalid', [ET.NO_ENTRY, ET.WARNING]))
if not self.sm['plan'].radarValid:
events.append(create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if self.sm['plan'].radarCanError:
events.append(create_event('radarCanError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if not CS.canValid:
events.append(create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if log.HealthData.FaultType.relayMalfunction in self.sm['health'].faults:
events.append(create_event('relayMalfunction', [ET.NO_ENTRY, ET.PERMANENT, ET.IMMEDIATE_DISABLE]))
# Only allow engagement with brake pressed when stopped behind another stopped car
if CS.brakePressed and self.sm['plan'].vTargetFuture >= STARTING_TARGET_SPEED \
and not self.CP.radarOffCan and CS.vEgo < 0.3:
events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
# TODO: clean up this alert creation in alerts refactor
if self.active:
for e in get_events(events, [ET.WARNING]):
# TODO: handle non static text in a cleaner way, like a callback
extra_text = ""
if e == "belowSteerSpeed":
if self.is_metric:
extra_text = str(int(round(self.CP.minSteerSpeed * CV.MS_TO_KPH))) + " kph"
else:
extra_text = str(int(round(self.CP.minSteerSpeed * CV.MS_TO_MPH))) + " mph"
self.AM.add(self.sm.frame, e, self.enabled, extra_text_2=extra_text)
for e in get_events(events, [ET.PERMANENT]):
# TODO: handle non static text in a cleaner way, like a callback
extra_text_1, extra_text_2 = "", ""
if e == "calibrationIncomplete":
extra_text_1 = str(self.sm['liveCalibration'].calPerc) + "%"
if self.is_metric:
extra_text_2 = str(int(round(Filter.MIN_SPEED * CV.MS_TO_KPH))) + " kph"
else:
extra_text_2 = str(int(round(Filter.MIN_SPEED * CV.MS_TO_MPH))) + " mph"
self.AM.add(self.sm.frame, str(e) + "Permanent", self.enabled, \
extra_text_1=extra_text_1, extra_text_2=extra_text_2)
return events
def data_sample(self):
"""Receive data from sockets and update carState"""
# Update carState from CAN
can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
CS = self.CI.update(self.CC, can_strs)
self.sm.update(0)
# Check for CAN timeout
if not can_strs:
self.can_error_counter += 1
self.can_rcv_error = True
else:
self.can_rcv_error = False
# When the panda and controlsd do not agree on controls_allowed # When the panda and controlsd do not agree on controls_allowed
# we want to disengage openpilot. However the status from the panda goes through # we want to disengage openpilot. However the status from the panda goes through
# another socket other than the CAN messages and one can arrive earlier than the other. # another socket other than the CAN messages and one can arrive earlier than the other.
# Therefore we allow a mismatch for two samples, then we trigger the disengagement. # Therefore we allow a mismatch for two samples, then we trigger the disengagement.
if not enabled: if not self.enabled:
mismatch_counter = 0 self.mismatch_counter = 0
controls_allowed = sm['health'].controlsAllowed if not self.sm['health'].controlsAllowed and self.enabled:
if not controls_allowed and enabled: self.mismatch_counter += 1
mismatch_counter += 1
if mismatch_counter >= 200:
events.append(create_event('controlsMismatch', [ET.IMMEDIATE_DISABLE]))
return CS, events, cal_perc, mismatch_counter, can_error_counter return CS
def state_transition(frame, CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM): def state_transition(self, CS, events):
"""Compute conditional state transitions and execute actions on state transitions""" """Compute conditional state transitions and execute actions on state transitions"""
enabled = isEnabled(state)
v_cruise_kph_last = v_cruise_kph self.v_cruise_kph_last = self.v_cruise_kph
# if stock cruise is completely disabled, then we can use our own set speed logic # if stock cruise is completely disabled, then we can use our own set speed logic
if not CP.enableCruise: if not self.CP.enableCruise:
v_cruise_kph = update_v_cruise(v_cruise_kph, CS.buttonEvents, enabled) self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled)
elif CP.enableCruise and CS.cruiseState.enabled: elif self.CP.enableCruise and CS.cruiseState.enabled:
v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH
# decrease the soft disable timer at every step, as it's reset on # decrease the soft disable timer at every step, as it's reset on
# entrance in SOFT_DISABLING state # entrance in SOFT_DISABLING state
soft_disable_timer = max(0, soft_disable_timer - 1) self.soft_disable_timer = max(0, self.soft_disable_timer - 1)
# DISABLED alert_types = []
if state == State.disabled:
if get_events(events, [ET.ENABLE]):
if get_events(events, [ET.NO_ENTRY]):
for e in get_events(events, [ET.NO_ENTRY]):
AM.add(frame, str(e) + "NoEntry", enabled)
else: # ENABLED, PRE ENABLING, SOFT DISABLING
if get_events(events, [ET.PRE_ENABLE]): if self.state != State.disabled:
state = State.preEnabled # user and immediate disable always have priority in a non-disabled state
else:
state = State.enabled
AM.add(frame, "enable", enabled)
v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, v_cruise_kph_last)
# ENABLED
elif state == State.enabled:
if get_events(events, [ET.USER_DISABLE]): if get_events(events, [ET.USER_DISABLE]):
state = State.disabled self.state = State.disabled
AM.add(frame, "disable", enabled) self.AM.add(self.sm.frame, "disable", self.enabled)
elif get_events(events, [ET.IMMEDIATE_DISABLE]): elif get_events(events, [ET.IMMEDIATE_DISABLE]):
state = State.disabled self.state = State.disabled
for e in get_events(events, [ET.IMMEDIATE_DISABLE]): alert_types = [ET.IMMEDIATE_DISABLE]
AM.add(frame, e, enabled)
elif get_events(events, [ET.SOFT_DISABLE]): else:
state = State.softDisabling # ENABLED
soft_disable_timer = 300 # 3s if self.state == State.enabled:
for e in get_events(events, [ET.SOFT_DISABLE]): if get_events(events, [ET.SOFT_DISABLE]):
AM.add(frame, e, enabled) self.state = State.softDisabling
self.soft_disable_timer = 300 # 3s
alert_types = [ET.SOFT_DISABLE]
# SOFT DISABLING # SOFT DISABLING
elif state == State.softDisabling: elif self.state == State.softDisabling:
if get_events(events, [ET.USER_DISABLE]): if not get_events(events, [ET.SOFT_DISABLE]):
state = State.disabled
AM.add(frame, "disable", enabled)
elif get_events(events, [ET.IMMEDIATE_DISABLE]):
state = State.disabled
for e in get_events(events, [ET.IMMEDIATE_DISABLE]):
AM.add(frame, e, enabled)
elif not get_events(events, [ET.SOFT_DISABLE]):
# no more soft disabling condition, so go back to ENABLED # no more soft disabling condition, so go back to ENABLED
state = State.enabled self.state = State.enabled
elif get_events(events, [ET.SOFT_DISABLE]) and soft_disable_timer > 0: elif get_events(events, [ET.SOFT_DISABLE]) and self.soft_disable_timer > 0:
for e in get_events(events, [ET.SOFT_DISABLE]): alert_types = [ET.SOFT_DISABLE]
AM.add(frame, e, enabled)
elif soft_disable_timer <= 0: elif self.soft_disable_timer <= 0:
state = State.disabled self.state = State.disabled
# PRE ENABLING # PRE ENABLING
elif state == State.preEnabled: elif self.state == State.preEnabled:
if get_events(events, [ET.USER_DISABLE]): if not get_events(events, [ET.PRE_ENABLE]):
state = State.disabled self.state = State.enabled
AM.add(frame, "disable", enabled)
# DISABLED
elif self.state == State.disabled:
if get_events(events, [ET.ENABLE]):
if get_events(events, [ET.NO_ENTRY]):
for e in get_events(events, [ET.NO_ENTRY]):
self.AM.add(self.sm.frame, str(e) + "NoEntry", self.enabled)
else:
if get_events(events, [ET.PRE_ENABLE]):
self.state = State.preEnabled
else:
self.state = State.enabled
self.AM.add(self.sm.frame, "enable", self.enabled)
self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last)
elif get_events(events, [ET.IMMEDIATE_DISABLE, ET.SOFT_DISABLE]): for e in get_events(events, alert_types):
state = State.disabled self.AM.add(self.sm.frame, e, self.enabled)
for e in get_events(events, [ET.IMMEDIATE_DISABLE, ET.SOFT_DISABLE]):
AM.add(frame, e, enabled)
elif not get_events(events, [ET.PRE_ENABLE]): # Check if actuators are enabled
state = State.enabled self.active = self.state == State.enabled or self.state == State.softDisabling
return state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last # Check if openpilot is engaged
self.enabled = self.active or self.state == State.preEnabled
def state_control(frame, rcv_frame, plan, path_plan, CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, def state_control(self, CS, events):
AM, rk, LaC, LoC, read_only, is_metric, cal_perc, last_blinker_frame, saturated_count):
"""Given the state, this function returns an actuators packet""" """Given the state, this function returns an actuators packet"""
actuators = car.CarControl.Actuators.new_message() plan = self.sm['plan']
path_plan = self.sm['pathPlan']
enabled = isEnabled(state) actuators = car.CarControl.Actuators.new_message()
active = isActive(state)
if CS.leftBlinker or CS.rightBlinker: if CS.leftBlinker or CS.rightBlinker:
last_blinker_frame = frame self.last_blinker_frame = self.sm.frame
if plan.fcw: if plan.fcw:
# send FCW alert if triggered by planner # send FCW alert if triggered by planner
AM.add(frame, "fcw", enabled) self.AM.add(self.sm.frame, "fcw", self.enabled)
elif CS.stockFcw: elif CS.stockFcw:
# send a silent alert when stock fcw triggers, since the car is already beeping # send a silent alert when stock fcw triggers, since the car is already beeping
AM.add(frame, "fcwStock", enabled) self.AM.add(self.sm.frame, "fcwStock", self.enabled)
# State specific actions # State specific actions
if state in [State.preEnabled, State.disabled]: if not self.active:
LaC.reset() self.LaC.reset()
LoC.reset(v_pid=CS.vEgo) self.LoC.reset(v_pid=CS.vEgo)
elif state in [State.enabled, State.softDisabling]: plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['plan'])
# parse warnings from car specific interface # no greater than dt mpc + dt, to prevent too high extraps
for e in get_events(events, [ET.WARNING]): dt = min(plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL
extra_text = ""
if e == "belowSteerSpeed":
if is_metric:
extra_text = str(int(round(CP.minSteerSpeed * CV.MS_TO_KPH))) + " kph"
else:
extra_text = str(int(round(CP.minSteerSpeed * CV.MS_TO_MPH))) + " mph"
AM.add(frame, e, enabled, extra_text_2=extra_text)
plan_age = DT_CTRL * (frame - rcv_frame['plan'])
dt = min(plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL # no greater than dt mpc + dt, to prevent too high extraps
a_acc_sol = plan.aStart + (dt / LON_MPC_STEP) * (plan.aTarget - plan.aStart) a_acc_sol = plan.aStart + (dt / LON_MPC_STEP) * (plan.aTarget - plan.aStart)
v_acc_sol = plan.vStart + dt * (a_acc_sol + plan.aStart) / 2.0 v_acc_sol = plan.vStart + dt * (a_acc_sol + plan.aStart) / 2.0
# Gas/Brake PID loop # Gas/Brake PID loop
actuators.gas, actuators.brake = LoC.update(active, CS.vEgo, CS.brakePressed, CS.standstill, CS.cruiseState.standstill, actuators.gas, actuators.brake = self.LoC.update(self.active, CS, v_acc_sol, plan.vTargetFuture, a_acc_sol, self.CP)
v_cruise_kph, v_acc_sol, plan.vTargetFuture, a_acc_sol, CP)
# Steering PID loop and lateral MPC # Steering PID loop and lateral MPC
actuators.steer, actuators.steerAngle, lac_log = LaC.update(active, CS.vEgo, CS.steeringAngle, CS.steeringRate, CS.steeringTorqueEps, CS.steeringPressed, CS.steeringRateLimited, CP, path_plan) actuators.steer, actuators.steerAngle, lac_log = self.LaC.update(self.active, CS, self.CP, path_plan)
# Check for difference between desired angle and angle for angle based control # Check for difference between desired angle and angle for angle based control
angle_control_saturated = CP.steerControlType == car.CarParams.SteerControlType.angle and \ angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \
abs(actuators.steerAngle - CS.steeringAngle) > STEER_ANGLE_SATURATION_THRESHOLD abs(actuators.steerAngle - CS.steeringAngle) > STEER_ANGLE_SATURATION_THRESHOLD
saturated_count = saturated_count + 1 if angle_control_saturated and not CS.steeringPressed and active else 0 if angle_control_saturated and not CS.steeringPressed and self.active:
self.saturated_count += 1
# Send a "steering required alert" if saturation count has reached the limit # Send a "steering required alert" if saturation count has reached the limit
if (lac_log.saturated and not CS.steeringPressed) or (saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): if (lac_log.saturated and not CS.steeringPressed) or \
(self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT):
# Check if we deviated from the path # Check if we deviated from the path
left_deviation = actuators.steer > 0 and path_plan.dPoly[3] > 0.1 left_deviation = actuators.steer > 0 and path_plan.dPoly[3] > 0.1
right_deviation = actuators.steer < 0 and path_plan.dPoly[3] < -0.1 right_deviation = actuators.steer < 0 and path_plan.dPoly[3] < -0.1
if left_deviation or right_deviation: if left_deviation or right_deviation:
AM.add(frame, "steerSaturated", enabled) self.AM.add(self.sm.frame, "steerSaturated", self.enabled)
# Parse permanent warnings to display constantly
for e in get_events(events, [ET.PERMANENT]):
extra_text_1, extra_text_2 = "", ""
if e == "calibrationIncomplete":
extra_text_1 = str(cal_perc) + "%"
if is_metric:
extra_text_2 = str(int(round(Filter.MIN_SPEED * CV.MS_TO_KPH))) + " kph"
else:
extra_text_2 = str(int(round(Filter.MIN_SPEED * CV.MS_TO_MPH))) + " mph"
AM.add(frame, str(e) + "Permanent", enabled, extra_text_1=extra_text_1, extra_text_2=extra_text_2)
return actuators, v_cruise_kph, v_acc_sol, a_acc_sol, lac_log, last_blinker_frame, saturated_count return actuators, v_acc_sol, a_acc_sol, lac_log
def data_send(sm, pm, CS, CI, CP, VM, state, events, actuators, v_cruise_kph, rk, AM, def publish_logs(self, CS, events, start_time, actuators, v_acc, a_acc, lac_log):
LaC, LoC, read_only, start_time, v_acc, a_acc, lac_log, events_prev,
last_blinker_frame, is_ldw_enabled, can_error_counter):
"""Send actuators and hud commands to the car, send controlsstate and MPC logging""" """Send actuators and hud commands to the car, send controlsstate and MPC logging"""
CC = car.CarControl.new_message() CC = car.CarControl.new_message()
CC.enabled = isEnabled(state) CC.enabled = self.enabled
CC.actuators = actuators CC.actuators = actuators
CC.cruiseControl.override = True CC.cruiseControl.override = True
CC.cruiseControl.cancel = not CP.enableCruise or (not isEnabled(state) and CS.cruiseState.enabled) CC.cruiseControl.cancel = not self.CP.enableCruise or (not self.enabled and CS.cruiseState.enabled)
# Some override values for Honda # Some override values for Honda
brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0)) # brake discount removes a sharp nonlinearity # brake discount removes a sharp nonlinearity
CC.cruiseControl.speedOverride = float(max(0.0, (LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount) if CP.enableCruise else 0.0) brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0))
CC.cruiseControl.accelOverride = CI.calc_accel_override(CS.aEgo, sm['plan'].aTarget, CS.vEgo, sm['plan'].vTarget) speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount)
CC.cruiseControl.speedOverride = float(speed_override if self.CP.enableCruise else 0.0)
CC.hudControl.setSpeed = float(v_cruise_kph * CV.KPH_TO_MS) CC.cruiseControl.accelOverride = self.CI.calc_accel_override(CS.aEgo, self.sm['plan'].aTarget, CS.vEgo, self.sm['plan'].vTarget)
CC.hudControl.speedVisible = isEnabled(state)
CC.hudControl.lanesVisible = isEnabled(state) CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS)
CC.hudControl.leadVisible = sm['plan'].hasLead CC.hudControl.speedVisible = self.enabled
CC.hudControl.lanesVisible = self.enabled
right_lane_visible = sm['pathPlan'].rProb > 0.5 CC.hudControl.leadVisible = self.sm['plan'].hasLead
left_lane_visible = sm['pathPlan'].lProb > 0.5
right_lane_visible = self.sm['pathPlan'].rProb > 0.5
left_lane_visible = self.sm['pathPlan'].lProb > 0.5
CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.rightLaneVisible = bool(right_lane_visible)
CC.hudControl.leftLaneVisible = bool(left_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible)
recent_blinker = (sm.frame - last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown
calibrated = sm['liveCalibration'].calStatus == Calibration.CALIBRATED ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
ldw_allowed = CS.vEgo > 31 * CV.MPH_TO_MS and not recent_blinker and is_ldw_enabled and not isActive(state) and calibrated and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED
md = sm['model']
if len(md.meta.desirePrediction):
l_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeLeft - 1]
r_lane_change_prob = md.meta.desirePrediction[log.PathPlan.Desire.laneChangeRight - 1]
l_lane_close = left_lane_visible and (sm['pathPlan'].lPoly[3] < (1.08 - CAMERA_OFFSET)) meta = self.sm['model'].meta
r_lane_close = right_lane_visible and (sm['pathPlan'].rPoly[3] > -(1.08 + CAMERA_OFFSET)) if len(meta.desirePrediction) and ldw_allowed:
l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1]
r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1]
l_lane_close = left_lane_visible and (self.sm['pathPlan'].lPoly[3] < (1.08 - CAMERA_OFFSET))
r_lane_close = right_lane_visible and (self.sm['pathPlan'].rPoly[3] > -(1.08 + CAMERA_OFFSET))
if ldw_allowed:
CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)
if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart:
AM.add(sm.frame, 'ldwPermanent', False) self.AM.add(self.sm.frame, 'ldwPermanent', False)
events.append(create_event('ldw', [ET.PERMANENT])) events.append(create_event('ldw', [ET.PERMANENT]))
AM.process_alerts(sm.frame) self.AM.process_alerts(self.sm.frame)
CC.hudControl.visualAlert = AM.visual_alert CC.hudControl.visualAlert = self.AM.visual_alert
if not read_only: if not self.read_only:
# send car controls over can # send car controls over can
can_sends = CI.apply(CC) can_sends = self.CI.apply(CC)
pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid))
force_decel = (sm['dMonitoringState'].awarenessStatus < 0.) or (state == State.softDisabling) force_decel = (self.sm['dMonitoringState'].awarenessStatus < 0.) or \
(self.state == State.softDisabling)
steer_angle_rad = (CS.steeringAngle - self.sm['pathPlan'].angleOffset) * CV.DEG_TO_RAD
# controlsState # controlsState
dat = messaging.new_message('controlsState') dat = messaging.new_message('controlsState')
dat.valid = CS.canValid dat.valid = CS.canValid
dat.controlsState = { controlsState = dat.controlsState
"alertText1": AM.alert_text_1, controlsState.alertText1 = self.AM.alert_text_1
"alertText2": AM.alert_text_2, controlsState.alertText2 = self.AM.alert_text_2
"alertSize": AM.alert_size, controlsState.alertSize = self.AM.alert_size
"alertStatus": AM.alert_status, controlsState.alertStatus = self.AM.alert_status
"alertBlinkingRate": AM.alert_rate, controlsState.alertBlinkingRate = self.AM.alert_rate
"alertType": AM.alert_type, controlsState.alertType = self.AM.alert_type
"alertSound": AM.audible_alert, controlsState.alertSound = self.AM.audible_alert
"driverMonitoringOn": sm['dMonitoringState'].faceDetected, controlsState.driverMonitoringOn = self.sm['dMonitoringState'].faceDetected
"canMonoTimes": list(CS.canMonoTimes), controlsState.canMonoTimes = list(CS.canMonoTimes)
"planMonoTime": sm.logMonoTime['plan'], controlsState.planMonoTime = self.sm.logMonoTime['plan']
"pathPlanMonoTime": sm.logMonoTime['pathPlan'], controlsState.pathPlanMonoTime = self.sm.logMonoTime['pathPlan']
"enabled": isEnabled(state), controlsState.enabled = self.enabled
"active": isActive(state), controlsState.active = self.active
"vEgo": CS.vEgo, controlsState.vEgo = CS.vEgo
"vEgoRaw": CS.vEgoRaw, controlsState.vEgoRaw = CS.vEgoRaw
"angleSteers": CS.steeringAngle, controlsState.angleSteers = CS.steeringAngle
"curvature": VM.calc_curvature((CS.steeringAngle - sm['pathPlan'].angleOffset) * CV.DEG_TO_RAD, CS.vEgo), controlsState.curvature = self.VM.calc_curvature(steer_angle_rad, CS.vEgo)
"steerOverride": CS.steeringPressed, controlsState.steerOverride = CS.steeringPressed
"state": state, controlsState.state = self.state
"engageable": not bool(get_events(events, [ET.NO_ENTRY])), controlsState.engageable = not bool(get_events(events, [ET.NO_ENTRY]))
"longControlState": LoC.long_control_state, controlsState.longControlState = self.LoC.long_control_state
"vPid": float(LoC.v_pid), controlsState.vPid = float(self.LoC.v_pid)
"vCruise": float(v_cruise_kph), controlsState.vCruise = float(self.v_cruise_kph)
"upAccelCmd": float(LoC.pid.p), controlsState.upAccelCmd = float(self.LoC.pid.p)
"uiAccelCmd": float(LoC.pid.i), controlsState.uiAccelCmd = float(self.LoC.pid.i)
"ufAccelCmd": float(LoC.pid.f), controlsState.ufAccelCmd = float(self.LoC.pid.f)
"angleSteersDes": float(LaC.angle_steers_des), controlsState.angleSteersDes = float(self.LaC.angle_steers_des)
"vTargetLead": float(v_acc), controlsState.vTargetLead = float(v_acc)
"aTarget": float(a_acc), controlsState.aTarget = float(a_acc)
"jerkFactor": float(sm['plan'].jerkFactor), controlsState.jerkFactor = float(self.sm['plan'].jerkFactor)
"gpsPlannerActive": sm['plan'].gpsPlannerActive, controlsState.gpsPlannerActive = self.sm['plan'].gpsPlannerActive
"vCurvature": sm['plan'].vCurvature, controlsState.vCurvature = self.sm['plan'].vCurvature
"decelForModel": sm['plan'].longitudinalPlanSource == log.Plan.LongitudinalPlanSource.model, controlsState.decelForModel = self.sm['plan'].longitudinalPlanSource == LongitudinalPlanSource.model
"cumLagMs": -rk.remaining * 1000., controlsState.cumLagMs = -self.rk.remaining * 1000.
"startMonoTime": int(start_time * 1e9), controlsState.startMonoTime = int(start_time * 1e9)
"mapValid": sm['plan'].mapValid, controlsState.mapValid = self.sm['plan'].mapValid
"forceDecel": bool(force_decel), controlsState.forceDecel = bool(force_decel)
"canErrorCounter": can_error_counter, controlsState.canErrorCounter = self.can_error_counter
}
if self.CP.lateralTuning.which() == 'pid':
if CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log
dat.controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr':
elif CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log
dat.controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi':
elif CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log
dat.controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat)
pm.send('controlsState', dat)
# carState # carState
cs_send = messaging.new_message('carState') cs_send = messaging.new_message('carState')
cs_send.valid = CS.canValid cs_send.valid = CS.canValid
cs_send.carState = CS cs_send.carState = CS
cs_send.carState.events = events cs_send.carState.events = events
pm.send('carState', cs_send) self.pm.send('carState', cs_send)
# carEvents - logged every second or on change # carEvents - logged every second or on change
events_bytes = events_to_bytes(events) events_bytes = events_to_bytes(events)
if (sm.frame % int(1. / DT_CTRL) == 0) or (events_bytes != events_prev): if (self.sm.frame % int(1. / DT_CTRL) == 0) or (events_bytes != self.events_prev):
ce_send = messaging.new_message('carEvents', len(events)) ce_send = messaging.new_message('carEvents', len(events))
ce_send.carEvents = events ce_send.carEvents = events
pm.send('carEvents', ce_send) self.pm.send('carEvents', ce_send)
self.events_prev = events_bytes
# carParams - logged every 50 seconds (> 1 per segment) # carParams - logged every 50 seconds (> 1 per segment)
if (sm.frame % int(50. / DT_CTRL) == 0): if (self.sm.frame % int(50. / DT_CTRL) == 0):
cp_send = messaging.new_message('carParams') cp_send = messaging.new_message('carParams')
cp_send.carParams = CP cp_send.carParams = self.CP
pm.send('carParams', cp_send) self.pm.send('carParams', cp_send)
# carControl # carControl
cc_send = messaging.new_message('carControl') cc_send = messaging.new_message('carControl')
cc_send.valid = CS.canValid cc_send.valid = CS.canValid
cc_send.carControl = CC cc_send.carControl = CC
pm.send('carControl', cc_send) self.pm.send('carControl', cc_send)
return CC, events_bytes
def controlsd_thread(sm=None, pm=None, can_sock=None): # copy CarControl to pass to CarInterface on the next iteration
gc.disable() self.CC = CC
# start the loop
set_realtime_priority(3)
params = Params()
is_metric = params.get("IsMetric", encoding='utf8') == "1"
is_ldw_enabled = params.get("IsLdwEnabled", encoding='utf8') == "1"
passive = params.get("Passive", encoding='utf8') == "1"
openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle", encoding='utf8') == "1"
community_feature_toggle = params.get("CommunityFeaturesToggle", encoding='utf8') == "1"
passive = passive or not openpilot_enabled_toggle def step(self):
# Passive if internet needed
internet_needed = params.get("Offroad_ConnectivityNeeded", encoding='utf8') is not None
passive = passive or internet_needed
# Pub/Sub Sockets
if pm is None:
pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams'])
if sm is None:
sm = messaging.SubMaster(['thermal', 'health', 'liveCalibration', 'dMonitoringState', 'plan', 'pathPlan', \
'model'])
if can_sock is None:
can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100
can_sock = messaging.sub_sock('can', timeout=can_timeout)
# wait for health and CAN packets
hw_type = messaging.recv_one(sm.sock['health']).health.hwType
has_relay = hw_type in [HwType.blackPanda, HwType.uno]
print("Waiting for CAN messages...")
messaging.get_one_can(can_sock)
CI, CP = get_car(can_sock, pm.sock['sendcan'], has_relay)
car_recognized = CP.carName != 'mock'
# If stock camera is disconnected, we loaded car controls and it's not chffrplus
controller_available = CP.enableCamera and CI.CC is not None and not passive
community_feature_disallowed = CP.communityFeature and not community_feature_toggle
read_only = not car_recognized or not controller_available or CP.dashcamOnly or community_feature_disallowed
if read_only:
CP.safetyModel = car.CarParams.SafetyModel.noOutput
# Write CarParams for radard and boardd safety mode
cp_bytes = CP.to_bytes()
params.put("CarParams", cp_bytes)
put_nonblocking("CarParamsCache", cp_bytes)
put_nonblocking("LongitudinalControl", "1" if CP.openpilotLongitudinalControl else "0")
CC = car.CarControl.new_message()
AM = AlertManager()
startup_alert = get_startup_alert(car_recognized, controller_available)
AM.add(sm.frame, startup_alert, False)
LoC = LongControl(CP, CI.compute_gb)
VM = VehicleModel(CP)
if CP.lateralTuning.which() == 'pid':
LaC = LatControlPID(CP)
elif CP.lateralTuning.which() == 'indi':
LaC = LatControlINDI(CP)
elif CP.lateralTuning.which() == 'lqr':
LaC = LatControlLQR(CP)
state = State.disabled
soft_disable_timer = 0
v_cruise_kph = 255
v_cruise_kph_last = 0
mismatch_counter = 0
can_error_counter = 0
last_blinker_frame = 0
saturated_count = 0
events_prev = []
sm['liveCalibration'].calStatus = Calibration.INVALID
sm['pathPlan'].sensorValid = True
sm['pathPlan'].posenetValid = True
sm['thermal'].freeSpace = 1.
sm['dMonitoringState'].events = []
sm['dMonitoringState'].awarenessStatus = 1.
sm['dMonitoringState'].faceDetected = False
# detect sound card presence
sounds_available = not os.path.isfile('/EON') or (os.path.isdir('/proc/asound/card0') and open('/proc/asound/card0/state').read().strip() == 'ONLINE')
# controlsd is driven by can recv, expected at 100Hz
rk = Ratekeeper(100, print_delay_threshold=None)
prof = Profiler(False) # off by default
while True:
start_time = sec_since_boot() start_time = sec_since_boot()
prof.checkpoint("Ratekeeper", ignore=True) self.prof.checkpoint("Ratekeeper", ignore=True)
# Sample data and compute car events # Sample data from sockets and get a carState
CS, events, cal_perc, mismatch_counter, can_error_counter = data_sample(CI, CC, sm, can_sock, state, mismatch_counter, can_error_counter, params) CS = self.data_sample()
prof.checkpoint("Sample") self.prof.checkpoint("Sample")
# Create alerts events = self.create_events(CS)
if not sm.alive['plan'] and sm.alive['pathPlan']: # only plan not being received: radar not communicating
events.append(create_event('radarCommIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
elif not sm.all_alive_and_valid():
events.append(create_event('commIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if not sm['pathPlan'].mpcSolutionValid:
events.append(create_event('plannerError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if not sm['pathPlan'].sensorValid and os.getenv("NOSENSOR") is None:
events.append(create_event('sensorDataInvalid', [ET.NO_ENTRY, ET.PERMANENT]))
if not sm['pathPlan'].paramsValid:
events.append(create_event('vehicleModelInvalid', [ET.WARNING]))
if not sm['pathPlan'].posenetValid:
events.append(create_event('posenetInvalid', [ET.NO_ENTRY, ET.WARNING]))
if not sm['plan'].radarValid:
events.append(create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if sm['plan'].radarCanError:
events.append(create_event('radarCanError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
if not CS.canValid:
events.append(create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if not sounds_available:
events.append(create_event('soundsUnavailable', [ET.NO_ENTRY, ET.PERMANENT]))
if internet_needed:
events.append(create_event('internetConnectivityNeeded', [ET.NO_ENTRY, ET.PERMANENT]))
if community_feature_disallowed:
events.append(create_event('communityFeatureDisallowed', [ET.PERMANENT]))
if read_only and not passive:
events.append(create_event('carUnrecognized', [ET.PERMANENT]))
if log.HealthData.FaultType.relayMalfunction in sm['health'].faults:
events.append(create_event('relayMalfunction', [ET.NO_ENTRY, ET.PERMANENT, ET.IMMEDIATE_DISABLE]))
if not self.read_only:
# Only allow engagement with brake pressed when stopped behind another stopped car # Update control state
if CS.brakePressed and sm['plan'].vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3: self.state_transition(CS, events)
events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE])) self.prof.checkpoint("State transition")
if not read_only:
# update control state
state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
state_transition(sm.frame, CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
prof.checkpoint("State transition")
# Compute actuators (runs PID loops and lateral MPC) # Compute actuators (runs PID loops and lateral MPC)
actuators, v_cruise_kph, v_acc, a_acc, lac_log, last_blinker_frame, saturated_count = \ actuators, v_acc, a_acc, lac_log = self.state_control(CS, events)
state_control(sm.frame, sm.rcv_frame, sm['plan'], sm['pathPlan'], CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM, rk,
LaC, LoC, read_only, is_metric, cal_perc, last_blinker_frame, saturated_count)
prof.checkpoint("State Control") self.prof.checkpoint("State Control")
# Publish data # Publish data
CC, events_prev = data_send(sm, pm, CS, CI, CP, VM, state, events, actuators, v_cruise_kph, rk, AM, LaC, self.publish_logs(CS, events, start_time, actuators, v_acc, a_acc, lac_log)
LoC, read_only, start_time, v_acc, a_acc, lac_log, events_prev, last_blinker_frame, self.prof.checkpoint("Sent")
is_ldw_enabled, can_error_counter)
prof.checkpoint("Sent")
rk.monitor_time()
prof.display()
def controlsd_thread(self):
while True:
self.step()
self.rk.monitor_time()
self.prof.display()
def main(sm=None, pm=None, logcan=None): def main(sm=None, pm=None, logcan=None):
controlsd_thread(sm, pm, logcan) controls = Controls(sm, pm, logcan)
controls.controlsd_thread()
if __name__ == "__main__": if __name__ == "__main__":

@ -62,9 +62,9 @@ class LatControlINDI():
return self.sat_count > self.sat_limit return self.sat_count > self.sat_limit
def update(self, active, v_ego, angle_steers, angle_steers_rate, eps_torque, steer_override, rate_limited, CP, path_plan): def update(self, active, CS, CP, path_plan):
# Update Kalman filter # Update Kalman filter
y = np.matrix([[math.radians(angle_steers)], [math.radians(angle_steers_rate)]]) y = np.matrix([[math.radians(CS.steeringAngle)], [math.radians(CS.steeringRate)]])
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y) self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
indi_log = log.ControlsState.LateralINDIState.new_message() indi_log = log.ControlsState.LateralINDIState.new_message()
@ -72,7 +72,7 @@ class LatControlINDI():
indi_log.steerRate = math.degrees(self.x[1]) indi_log.steerRate = math.degrees(self.x[1])
indi_log.steerAccel = math.degrees(self.x[2]) indi_log.steerAccel = math.degrees(self.x[2])
if v_ego < 0.3 or not active: if CS.vEgo < 0.3 or not active:
indi_log.active = False indi_log.active = False
self.output_steer = 0.0 self.output_steer = 0.0
self.delayed_output = 0.0 self.delayed_output = 0.0
@ -105,7 +105,7 @@ class LatControlINDI():
else: else:
self.output_steer = self.delayed_output + delta_u self.output_steer = self.delayed_output + delta_u
steers_max = get_steer_max(CP, v_ego) steers_max = get_steer_max(CP, CS.vEgo)
self.output_steer = clip(self.output_steer, -steers_max, steers_max) self.output_steer = clip(self.output_steer, -steers_max, steers_max)
indi_log.active = True indi_log.active = True
@ -116,7 +116,7 @@ class LatControlINDI():
indi_log.delta = float(delta_u) indi_log.delta = float(delta_u)
indi_log.output = float(self.output_steer) indi_log.output = float(self.output_steer)
check_saturation = (v_ego > 10.) and not rate_limited and not steer_override check_saturation = (CS.vEgo> 10.) and not CS.steeringRateLimited and not CS.steeringPressed
indi_log.saturated = self._check_saturation(self.output_steer, check_saturation, steers_max) indi_log.saturated = self._check_saturation(self.output_steer, check_saturation, steers_max)
return float(self.output_steer), float(self.angle_steers_des), indi_log return float(self.output_steer), float(self.angle_steers_des), indi_log

@ -43,22 +43,24 @@ class LatControlLQR():
return self.sat_count > self.sat_limit return self.sat_count > self.sat_limit
def update(self, active, v_ego, angle_steers, angle_steers_rate, eps_torque, steer_override, rate_limited, CP, path_plan): def update(self, active, CS, CP, path_plan):
lqr_log = log.ControlsState.LateralLQRState.new_message() lqr_log = log.ControlsState.LateralLQRState.new_message()
steers_max = get_steer_max(CP, v_ego) steers_max = get_steer_max(CP, CS.vEgo)
torque_scale = (0.45 + v_ego / 60.0)**2 # Scale actuator model with speed torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed
steering_angle = CS.steeringAngle
# Subtract offset. Zero angle should correspond to zero torque # Subtract offset. Zero angle should correspond to zero torque
self.angle_steers_des = path_plan.angleSteers - path_plan.angleOffset self.angle_steers_des = path_plan.angleSteers - path_plan.angleOffset
angle_steers -= path_plan.angleOffset steering_angle -= path_plan.angleOffset
# Update Kalman filter # Update Kalman filter
angle_steers_k = float(self.C.dot(self.x_hat)) angle_steers_k = float(self.C.dot(self.x_hat))
e = angle_steers - angle_steers_k e = steering_angle - angle_steers_k
self.x_hat = self.A.dot(self.x_hat) + self.B.dot(eps_torque / torque_scale) + self.L.dot(e) self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e)
if v_ego < 0.3 or not active: if CS.vEgo < 0.3 or not active:
lqr_log.active = False lqr_log.active = False
lqr_output = 0. lqr_output = 0.
self.reset() self.reset()
@ -70,7 +72,7 @@ class LatControlLQR():
lqr_output = torque_scale * u_lqr / self.scale lqr_output = torque_scale * u_lqr / self.scale
# Integrator # Integrator
if steer_override: if CS.steeringPressed:
self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr)) self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr))
else: else:
error = self.angle_steers_des - angle_steers_k error = self.angle_steers_des - angle_steers_k
@ -84,7 +86,7 @@ class LatControlLQR():
self.output_steer = lqr_output + self.i_lqr self.output_steer = lqr_output + self.i_lqr
self.output_steer = clip(self.output_steer, -steers_max, steers_max) self.output_steer = clip(self.output_steer, -steers_max, steers_max)
check_saturation = (v_ego > 10) and not rate_limited and not steer_override check_saturation = (CS.vEgo > 10) and not CS.steeringRateLimited and not CS.steeringPressed
saturated = self._check_saturation(self.output_steer, check_saturation, steers_max) saturated = self._check_saturation(self.output_steer, check_saturation, steers_max)
lqr_log.steerAngle = angle_steers_k + path_plan.angleOffset lqr_log.steerAngle = angle_steers_k + path_plan.angleOffset

@ -14,31 +14,31 @@ class LatControlPID():
def reset(self): def reset(self):
self.pid.reset() self.pid.reset()
def update(self, active, v_ego, angle_steers, angle_steers_rate, eps_torque, steer_override, rate_limited, CP, path_plan): def update(self, active, CS, CP, path_plan):
pid_log = log.ControlsState.LateralPIDState.new_message() pid_log = log.ControlsState.LateralPIDState.new_message()
pid_log.steerAngle = float(angle_steers) pid_log.steerAngle = float(CS.steeringAngle)
pid_log.steerRate = float(angle_steers_rate) pid_log.steerRate = float(CS.steeringRate)
if v_ego < 0.3 or not active: if CS.vEgo < 0.3 or not active:
output_steer = 0.0 output_steer = 0.0
pid_log.active = False pid_log.active = False
self.pid.reset() self.pid.reset()
else: else:
self.angle_steers_des = path_plan.angleSteers # get from MPC/PathPlanner self.angle_steers_des = path_plan.angleSteers # get from MPC/PathPlanner
steers_max = get_steer_max(CP, v_ego) steers_max = get_steer_max(CP, CS.vEgo)
self.pid.pos_limit = steers_max self.pid.pos_limit = steers_max
self.pid.neg_limit = -steers_max self.pid.neg_limit = -steers_max
steer_feedforward = self.angle_steers_des # feedforward desired angle steer_feedforward = self.angle_steers_des # feedforward desired angle
if CP.steerControlType == car.CarParams.SteerControlType.torque: if CP.steerControlType == car.CarParams.SteerControlType.torque:
# TODO: feedforward something based on path_plan.rateSteers # TODO: feedforward something based on path_plan.rateSteers
steer_feedforward -= path_plan.angleOffset # subtract the offset, since it does not contribute to resistive torque steer_feedforward -= path_plan.angleOffset # subtract the offset, since it does not contribute to resistive torque
steer_feedforward *= v_ego**2 # proportional to realigning tire momentum (~ lateral accel) steer_feedforward *= CS.vEgo**2 # proportional to realigning tire momentum (~ lateral accel)
deadzone = 0.0 deadzone = 0.0
check_saturation = (v_ego > 10) and not rate_limited and not steer_override check_saturation = (CS.vEgo > 10) and not CS.steeringRateLimited and not CS.steeringPressed
output_steer = self.pid.update(self.angle_steers_des, angle_steers, check_saturation=check_saturation, override=steer_override, output_steer = self.pid.update(self.angle_steers_des, CS.steeringAngle, check_saturation=check_saturation, override=CS.steeringPressed,
feedforward=steer_feedforward, speed=v_ego, deadzone=deadzone) feedforward=steer_feedforward, speed=CS.vEgo, deadzone=deadzone)
pid_log.active = True pid_log.active = True
pid_log.p = self.pid.p pid_log.p = self.pid.p
pid_log.i = self.pid.i pid_log.i = self.pid.i

@ -71,19 +71,19 @@ class LongControl():
self.pid.reset() self.pid.reset()
self.v_pid = v_pid self.v_pid = v_pid
def update(self, active, v_ego, brake_pressed, standstill, cruise_standstill, v_cruise, v_target, v_target_future, a_target, CP): def update(self, active, CS, v_target, v_target_future, a_target, CP):
"""Update longitudinal control. This updates the state machine and runs a PID loop""" """Update longitudinal control. This updates the state machine and runs a PID loop"""
# Actuation limits # Actuation limits
gas_max = interp(v_ego, CP.gasMaxBP, CP.gasMaxV) gas_max = interp(CS.vEgo, CP.gasMaxBP, CP.gasMaxV)
brake_max = interp(v_ego, CP.brakeMaxBP, CP.brakeMaxV) brake_max = interp(CS.vEgo, CP.brakeMaxBP, CP.brakeMaxV)
# Update state machine # Update state machine
output_gb = self.last_output_gb output_gb = self.last_output_gb
self.long_control_state = long_control_state_trans(active, self.long_control_state, v_ego, self.long_control_state = long_control_state_trans(active, self.long_control_state, CS.vEgo,
v_target_future, self.v_pid, output_gb, v_target_future, self.v_pid, output_gb,
brake_pressed, cruise_standstill) CS.brakePressed, CS.cruiseState.standstill)
v_ego_pid = max(v_ego, MIN_CAN_SPEED) # Without this we get jumps, CAN bus reports 0 when speed < 0.3 v_ego_pid = max(CS.vEgo, MIN_CAN_SPEED) # Without this we get jumps, CAN bus reports 0 when speed < 0.3
if self.long_control_state == LongCtrlState.off: if self.long_control_state == LongCtrlState.off:
self.v_pid = v_ego_pid self.v_pid = v_ego_pid
@ -98,7 +98,7 @@ class LongControl():
# Toyota starts braking more when it thinks you want to stop # Toyota starts braking more when it thinks you want to stop
# Freeze the integrator so we don't accelerate to compensate, and don't allow positive acceleration # Freeze the integrator so we don't accelerate to compensate, and don't allow positive acceleration
prevent_overshoot = not CP.stoppingControl and v_ego < 1.5 and v_target_future < 0.7 prevent_overshoot = not CP.stoppingControl and CS.vEgo < 1.5 and v_target_future < 0.7
deadzone = interp(v_ego_pid, CP.longitudinalTuning.deadzoneBP, CP.longitudinalTuning.deadzoneV) deadzone = interp(v_ego_pid, CP.longitudinalTuning.deadzoneBP, CP.longitudinalTuning.deadzoneV)
output_gb = self.pid.update(self.v_pid, v_ego_pid, speed=v_ego_pid, deadzone=deadzone, feedforward=a_target, freeze_integrator=prevent_overshoot) output_gb = self.pid.update(self.v_pid, v_ego_pid, speed=v_ego_pid, deadzone=deadzone, feedforward=a_target, freeze_integrator=prevent_overshoot)
@ -109,18 +109,18 @@ class LongControl():
# Intention is to stop, switch to a different brake control until we stop # Intention is to stop, switch to a different brake control until we stop
elif self.long_control_state == LongCtrlState.stopping: elif self.long_control_state == LongCtrlState.stopping:
# Keep applying brakes until the car is stopped # Keep applying brakes until the car is stopped
if not standstill or output_gb > -BRAKE_STOPPING_TARGET: if not CS.standstill or output_gb > -BRAKE_STOPPING_TARGET:
output_gb -= STOPPING_BRAKE_RATE / RATE output_gb -= STOPPING_BRAKE_RATE / RATE
output_gb = clip(output_gb, -brake_max, gas_max) output_gb = clip(output_gb, -brake_max, gas_max)
self.v_pid = v_ego self.v_pid = CS.vEgo
self.pid.reset() self.pid.reset()
# Intention is to move again, release brake fast before handing control to PID # Intention is to move again, release brake fast before handing control to PID
elif self.long_control_state == LongCtrlState.starting: elif self.long_control_state == LongCtrlState.starting:
if output_gb < -0.2: if output_gb < -0.2:
output_gb += STARTING_BRAKE_RATE / RATE output_gb += STARTING_BRAKE_RATE / RATE
self.v_pid = v_ego self.v_pid = CS.vEgo
self.pid.reset() self.pid.reset()
self.last_output_gb = output_gb self.last_output_gb = output_gb

@ -7,7 +7,7 @@ import pprofile
import pyprof2calltree import pyprof2calltree
from tools.lib.logreader import LogReader from tools.lib.logreader import LogReader
from selfdrive.controls.controlsd import controlsd_thread from selfdrive.controls.controlsd import main as controlsd_thread
from selfdrive.test.profiling.lib import SubMaster, PubMaster, SubSocket, ReplayDone from selfdrive.test.profiling.lib import SubMaster, PubMaster, SubSocket, ReplayDone
from selfdrive.test.process_replay.process_replay import CONFIGS from selfdrive.test.process_replay.process_replay import CONFIGS

Loading…
Cancel
Save