acados long merged (#22224)
* rebased * cleaner, seems to drive better? * more stable * wrong import * new way of thinking * reports look nice * start move back * works at leas * good timestamps * step by step * somewhat work * tests pass * ALL CARS STOPPED * should work * fake a cruise obstacle * cleaner costs * pretty good except cruise braking * works pretty well now! * cleanup * add source * add source * that is needed for unit tests * nan recovery * little cleaner * stop wasting arrays * unreasonable without unfair init * this isnt needed without the exponential * that works too * unused * uses less * new ref * long enough * e2e long api * DONT PUT IN A VIEW INTO ACADOS * new ref for outside weights * remove debug printspull/22397/head
parent
f03ee4599e
commit
fe983a7b8c
13 changed files with 300 additions and 447 deletions
@ -1,2 +0,0 @@ |
||||
acados_ocp_lead.json |
||||
c_generated_code/ |
@ -1,58 +0,0 @@ |
||||
Import('env', 'arch') |
||||
|
||||
gen = "c_generated_code" |
||||
|
||||
casadi_model = [ |
||||
f'{gen}/lead_model/lead_expl_ode_fun.c', |
||||
f'{gen}/lead_model/lead_expl_vde_forw.c', |
||||
] |
||||
|
||||
casadi_cost_y = [ |
||||
f'{gen}/lead_cost/lead_cost_y_fun.c', |
||||
f'{gen}/lead_cost/lead_cost_y_fun_jac_ut_xt.c', |
||||
f'{gen}/lead_cost/lead_cost_y_hess.c', |
||||
] |
||||
|
||||
casadi_cost_e = [ |
||||
f'{gen}/lead_cost/lead_cost_y_e_fun.c', |
||||
f'{gen}/lead_cost/lead_cost_y_e_fun_jac_ut_xt.c', |
||||
f'{gen}/lead_cost/lead_cost_y_e_hess.c', |
||||
] |
||||
|
||||
casadi_cost_0 = [ |
||||
f'{gen}/lead_cost/lead_cost_y_0_fun.c', |
||||
f'{gen}/lead_cost/lead_cost_y_0_fun_jac_ut_xt.c', |
||||
f'{gen}/lead_cost/lead_cost_y_0_hess.c', |
||||
] |
||||
|
||||
build_files = [f'{gen}/acados_solver_lead.c'] + casadi_model + casadi_cost_y + casadi_cost_e + casadi_cost_0 |
||||
|
||||
# extra generated files used to trigger a rebuild |
||||
generated_files = [ |
||||
f'{gen}/Makefile', |
||||
|
||||
f'{gen}/main_lead.c', |
||||
f'{gen}/acados_solver_lead.h', |
||||
|
||||
f'{gen}/lead_model/lead_expl_vde_adj.c', |
||||
|
||||
f'{gen}/lead_model/lead_model.h', |
||||
f'{gen}/lead_cost/lead_cost_y_fun.h', |
||||
f'{gen}/lead_cost/lead_cost_y_e_fun.h', |
||||
f'{gen}/lead_cost/lead_cost_y_0_fun.h', |
||||
] + build_files |
||||
|
||||
lenv = env.Clone() |
||||
lenv.Clean(generated_files, Dir(gen)) |
||||
|
||||
lenv.Command(generated_files, |
||||
["lead_mpc.py"], |
||||
f"cd {Dir('.').abspath} && python lead_mpc.py") |
||||
|
||||
lenv["CFLAGS"].append("-DACADOS_WITH_QPOASES") |
||||
lenv["CXXFLAGS"].append("-DACADOS_WITH_QPOASES") |
||||
lenv["CCFLAGS"].append("-Wno-unused") |
||||
lenv["LINKFLAGS"].append("-Wl,--disable-new-dtags") |
||||
lenv.SharedLibrary(f"{gen}/acados_ocp_solver_lead", |
||||
build_files, |
||||
LIBS=['m', 'acados', 'hpipm', 'blasfeo', 'qpOASES_e']) |
@ -1,270 +0,0 @@ |
||||
#!/usr/bin/env python3 |
||||
import os |
||||
import math |
||||
import numpy as np |
||||
|
||||
from common.realtime import sec_since_boot |
||||
from common.numpy_fast import clip |
||||
from selfdrive.swaglog import cloudlog |
||||
from selfdrive.modeld.constants import T_IDXS |
||||
from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG, CONTROL_N |
||||
from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU |
||||
|
||||
from pyextra.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver |
||||
from casadi import SX, vertcat, sqrt, exp |
||||
|
||||
LEAD_MPC_DIR = os.path.dirname(os.path.abspath(__file__)) |
||||
EXPORT_DIR = os.path.join(LEAD_MPC_DIR, "c_generated_code") |
||||
JSON_FILE = "acados_ocp_lead.json" |
||||
|
||||
MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6)) |
||||
N = len(MPC_T) - 1 |
||||
|
||||
|
||||
def desired_follow_distance(v_ego, v_lead): |
||||
TR = 1.8 |
||||
G = 9.81 |
||||
return (v_ego * TR - (v_lead - v_ego) * TR + v_ego * v_ego / (2 * G) - v_lead * v_lead / (2 * G)) + 4.0 |
||||
|
||||
|
||||
def gen_lead_model(): |
||||
model = AcadosModel() |
||||
model.name = 'lead' |
||||
|
||||
# set up states & controls |
||||
x_ego = SX.sym('x_ego') |
||||
v_ego = SX.sym('v_ego') |
||||
a_ego = SX.sym('a_ego') |
||||
model.x = vertcat(x_ego, v_ego, a_ego) |
||||
|
||||
# controls |
||||
j_ego = SX.sym('j_ego') |
||||
model.u = vertcat(j_ego) |
||||
|
||||
# xdot |
||||
x_ego_dot = SX.sym('x_ego_dot') |
||||
v_ego_dot = SX.sym('v_ego_dot') |
||||
a_ego_dot = SX.sym('a_ego_dot') |
||||
model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot) |
||||
|
||||
# live parameters |
||||
x_lead = SX.sym('x_lead') |
||||
v_lead = SX.sym('v_lead') |
||||
model.p = vertcat(x_lead, v_lead) |
||||
|
||||
# dynamics model |
||||
f_expl = vertcat(v_ego, a_ego, j_ego) |
||||
model.f_impl_expr = model.xdot - f_expl |
||||
model.f_expl_expr = f_expl |
||||
return model |
||||
|
||||
|
||||
def gen_lead_mpc_solver(): |
||||
ocp = AcadosOcp() |
||||
ocp.model = gen_lead_model() |
||||
|
||||
Tf = np.array(MPC_T)[-1] |
||||
|
||||
# set dimensions |
||||
ocp.dims.N = N |
||||
|
||||
# set cost module |
||||
ocp.cost.cost_type = 'NONLINEAR_LS' |
||||
ocp.cost.cost_type_e = 'NONLINEAR_LS' |
||||
|
||||
QR = np.diag([0.0, 0.0, 0.0, 0.0]) |
||||
Q = np.diag([0.0, 0.0, 0.0]) |
||||
|
||||
ocp.cost.W = QR |
||||
ocp.cost.W_e = Q |
||||
|
||||
x_ego, v_ego, a_ego = ocp.model.x[0], ocp.model.x[1], ocp.model.x[2] |
||||
j_ego = ocp.model.u[0] |
||||
|
||||
ocp.cost.yref = np.zeros((4, )) |
||||
ocp.cost.yref_e = np.zeros((3, )) |
||||
|
||||
x_lead, v_lead = ocp.model.p[0], ocp.model.p[1] |
||||
desired_dist = desired_follow_distance(v_ego, v_lead) |
||||
dist_err = (desired_dist - (x_lead - x_ego))/(sqrt(v_ego + 0.5) + 0.1) |
||||
|
||||
# TODO hacky weights to keep behavior the same |
||||
ocp.model.cost_y_expr = vertcat(exp(.3 * dist_err) - 1., |
||||
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5), |
||||
a_ego * (.1 * v_ego + 1.0), |
||||
j_ego * (.1 * v_ego + 1.0)) |
||||
ocp.model.cost_y_expr_e = vertcat(exp(.3 * dist_err) - 1., |
||||
((x_lead - x_ego) - (desired_dist)) / (0.05 * v_ego + 0.5), |
||||
a_ego * (.1 * v_ego + 1.0)) |
||||
ocp.parameter_values = np.array([0., .0]) |
||||
|
||||
# set constraints |
||||
ocp.constraints.constr_type = 'BGH' |
||||
ocp.constraints.idxbx = np.array([1,]) |
||||
ocp.constraints.lbx = np.array([0,]) |
||||
ocp.constraints.ubx = np.array([100.,]) |
||||
x0 = np.array([0.0, 0.0, 0.0]) |
||||
ocp.constraints.x0 = x0 |
||||
|
||||
|
||||
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' |
||||
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' |
||||
ocp.solver_options.integrator_type = 'ERK' |
||||
ocp.solver_options.nlp_solver_type = 'SQP_RTI' |
||||
#ocp.solver_options.nlp_solver_tol_stat = 1e-3 |
||||
#ocp.solver_options.tol = 1e-3 |
||||
|
||||
ocp.solver_options.qp_solver_iter_max = 10 |
||||
#ocp.solver_options.qp_tol = 1e-3 |
||||
|
||||
# set prediction horizon |
||||
ocp.solver_options.tf = Tf |
||||
ocp.solver_options.shooting_nodes = np.array(MPC_T) |
||||
|
||||
ocp.code_export_directory = EXPORT_DIR |
||||
return ocp |
||||
|
||||
|
||||
class LeadMpc(): |
||||
def __init__(self, lead_id): |
||||
self.lead_id = lead_id |
||||
self.solver = AcadosOcpSolver('lead', N, EXPORT_DIR) |
||||
self.v_solution = [0.0 for i in range(N)] |
||||
self.a_solution = [0.0 for i in range(N)] |
||||
self.j_solution = [0.0 for i in range(N-1)] |
||||
yref = np.zeros((N+1,4)) |
||||
self.solver.cost_set_slice(0, N, "yref", yref[:N]) |
||||
self.solver.set(N, "yref", yref[N][:3]) |
||||
self.x_sol = np.zeros((N+1, 3)) |
||||
self.u_sol = np.zeros((N,1)) |
||||
self.lead_xv = np.zeros((N+1,2)) |
||||
self.reset() |
||||
self.set_weights() |
||||
|
||||
def reset(self): |
||||
for i in range(N+1): |
||||
self.solver.set(i, 'x', np.zeros(3)) |
||||
self.last_cloudlog_t = 0 |
||||
self.status = False |
||||
self.new_lead = False |
||||
self.prev_lead_status = False |
||||
self.crashing = False |
||||
self.prev_lead_x = 10 |
||||
self.solution_status = 0 |
||||
self.x0 = np.zeros(3) |
||||
|
||||
def set_weights(self): |
||||
W = np.diag([MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE, |
||||
MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK]) |
||||
Ws = np.tile(W[None], reps=(N,1,1)) |
||||
self.solver.cost_set_slice(0, N, 'W', Ws, api='old') |
||||
#TODO hacky weights to keep behavior the same |
||||
self.solver.cost_set(N, 'W', (3./5.)*W[:3,:3]) |
||||
|
||||
def set_cur_state(self, v, a): |
||||
self.x0[1] = v |
||||
self.x0[2] = a |
||||
|
||||
def extrapolate_lead(self, x_lead, v_lead, a_lead_0, a_lead_tau): |
||||
dt =.2 |
||||
t = .0 |
||||
for i in range(N+1): |
||||
if i > 4: |
||||
dt = .6 |
||||
self.lead_xv[i, 0], self.lead_xv[i, 1] = x_lead, v_lead |
||||
a_lead = a_lead_0 * math.exp(-a_lead_tau * (t**2)/2.) |
||||
x_lead += v_lead * dt |
||||
v_lead += a_lead * dt |
||||
if v_lead < 0.0: |
||||
a_lead = 0.0 |
||||
v_lead = 0.0 |
||||
t += dt |
||||
|
||||
def init_with_sim(self, v_ego, lead_xv, a_lead_0): |
||||
a_ego = min(0.0, -2 * (v_ego - lead_xv[0,1]) * (v_ego - lead_xv[0,1]) / (2.0 * lead_xv[0,0] + 0.01) + a_lead_0) |
||||
dt =.2 |
||||
t = .0 |
||||
x_ego = 0.0 |
||||
for i in range(N+1): |
||||
if i > 4: |
||||
dt = .6 |
||||
v_ego += a_ego * dt |
||||
if v_ego <= 0.0: |
||||
v_ego = 0.0 |
||||
a_ego = 0.0 |
||||
x_ego += v_ego * dt |
||||
t += dt |
||||
self.solver.set(i, 'x', np.array([x_ego, v_ego, a_ego])) |
||||
|
||||
def update(self, carstate, radarstate, v_cruise): |
||||
self.crashing = False |
||||
v_ego = self.x0[1] |
||||
if self.lead_id == 0: |
||||
lead = radarstate.leadOne |
||||
else: |
||||
lead = radarstate.leadTwo |
||||
self.status = lead.status |
||||
if lead is not None and lead.status: |
||||
x_lead = lead.dRel |
||||
v_lead = max(0.0, lead.vLead) |
||||
a_lead = clip(lead.aLeadK, -5.0, 5.0) |
||||
|
||||
# MPC will not converge if immidiate crash is expected |
||||
# Clip lead distance to what is still possible to brake for |
||||
MIN_ACCEL = -3.5 |
||||
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-MIN_ACCEL * 2) |
||||
if x_lead < min_x_lead: |
||||
x_lead = min_x_lead |
||||
self.crashing = True |
||||
|
||||
if (v_lead < 0.1 or -a_lead / 2.0 > v_lead): |
||||
v_lead = 0.0 |
||||
a_lead = 0.0 |
||||
|
||||
self.a_lead_tau = lead.aLeadTau |
||||
self.new_lead = False |
||||
self.extrapolate_lead(x_lead, v_lead, a_lead, self.a_lead_tau) |
||||
if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5: |
||||
self.init_with_sim(v_ego, self.lead_xv, a_lead) |
||||
self.new_lead = True |
||||
|
||||
self.prev_lead_status = True |
||||
self.prev_lead_x = x_lead |
||||
else: |
||||
self.prev_lead_status = False |
||||
# Fake a fast lead car, so mpc keeps running |
||||
x_lead = 50.0 |
||||
v_lead = v_ego + 10.0 |
||||
a_lead = 0.0 |
||||
self.a_lead_tau = _LEAD_ACCEL_TAU |
||||
self.extrapolate_lead(x_lead, v_lead, a_lead, self.a_lead_tau) |
||||
self.solver.constraints_set(0, "lbx", self.x0) |
||||
self.solver.constraints_set(0, "ubx", self.x0) |
||||
for i in range(N+1): |
||||
self.solver.set_param(i, self.lead_xv[i]) |
||||
|
||||
self.solution_status = self.solver.solve() |
||||
self.solver.fill_in_slice(0, N+1, 'x', self.x_sol) |
||||
self.solver.fill_in_slice(0, N, 'u', self.u_sol) |
||||
#self.solver.print_statistics() |
||||
|
||||
self.v_solution = np.interp(T_IDXS[:CONTROL_N], MPC_T, list(self.x_sol[:,1])) |
||||
self.a_solution = np.interp(T_IDXS[:CONTROL_N], MPC_T, list(self.x_sol[:,2])) |
||||
self.j_solution = np.interp(T_IDXS[:CONTROL_N], MPC_T[:-1], list(self.u_sol[:,0])) |
||||
|
||||
# Reset if goes through lead car |
||||
self.crashing = self.crashing or np.sum(self.lead_xv[:,0] - self.x_sol[:,0] < 0) > 0 |
||||
|
||||
t = sec_since_boot() |
||||
if self.solution_status != 0: |
||||
if t > self.last_cloudlog_t + 5.0: |
||||
self.last_cloudlog_t = t |
||||
cloudlog.warning("Lead mpc %d reset, solution_status: %s" % ( |
||||
self.lead_id, self.solution_status)) |
||||
self.prev_lead_status = False |
||||
self.reset() |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
ocp = gen_lead_mpc_solver() |
||||
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE, build=False) |
@ -1 +1 @@ |
||||
8c733450bb28bcdb11d6b9991c8784e1f720f7b2 |
||||
2282e3f208438237fe61d7bf636d6ad6b507c571 |
Loading…
Reference in new issue