add lead prob

pull/30273/head
Yassine 2 years ago
parent 730e56eff0
commit fff18f86cb
  1. 5
      selfdrive/modeld/constants.py
  2. 15
      selfdrive/modeld/fill_model_msg.py

@ -6,5 +6,6 @@ def index_function(idx, max_val=192, max_idx=32):
T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)]
X_IDXS = [index_function(idx, max_val=192.0) for idx in range(IDX_N)]
lEAD_T_IDXS = [0., 2., 4., 6., 8., 10.]
META_T_IdXS = [2., 4., 6., 8., 10.]
LEAD_T_IDXS = [0., 2., 4., 6., 8., 10.]
LEAD_T_OFFSETS = [0., 2., 4.]
META_T_IDXS = [2., 4., 6., 8., 10.]

@ -2,7 +2,7 @@ import capnp
import numpy as np
from typing import List, Dict
from openpilot.selfdrive.modeld.models.driving_pyx import PublishState
from openpilot.selfdrive.modeld.constants import T_IDXS, X_IDXS, lEAD_T_IDXS, META_T_IdXS
from openpilot.selfdrive.modeld.constants import T_IDXS, X_IDXS, LEAD_T_IDXS, META_T_IDXS, LEAD_T_OFFSETS
def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
builder.t = t
@ -63,13 +63,12 @@ def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str,
modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
# leads
modelV2.init('leadsV3', 2)
for i in range(2):
fill_xyvat(modelV2.leadsV3[i], lEAD_T_IDXS, net_output_data['lead'][0,i,:,0], net_output_data['lead'][0,i,:,1], net_output_data['lead'][0,i,:,2], net_output_data['lead'][0,i,:,3],
modelV2.init('leadsV3', 3)
for i in range(3):
fill_xyvat(modelV2.leadsV3[i], LEAD_T_IDXS, net_output_data['lead'][0,i,:,0], net_output_data['lead'][0,i,:,1], net_output_data['lead'][0,i,:,2], net_output_data['lead'][0,i,:,3],
net_output_data['lead_stds'][0,i,:,0], net_output_data['lead_stds'][0,i,:,1], net_output_data['lead_stds'][0,i,:,2], net_output_data['lead_stds'][0,i,:,3])
# leads probs
# TODO
modelV2.leadsV3[i].prob = net_output_data['lead_prob'][0,i].tolist()
modelV2.leadsV3[i].probTime = LEAD_T_OFFSETS[i]
# confidence
# TODO
@ -80,7 +79,7 @@ def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str,
modelV2.meta.engagedProb = 0.
modelV2.meta.hardBrakePredicted = False
modelV2.meta.init('disengagePredictions')
modelV2.meta.disengagePredictions.t = META_T_IdXS
modelV2.meta.disengagePredictions.t = META_T_IDXS
modelV2.meta.disengagePredictions.brakeDisengageProbs = np.zeros(5, dtype=np.float32).tolist()
modelV2.meta.disengagePredictions.gasDisengageProbs = np.zeros(5, dtype=np.float32).tolist()
modelV2.meta.disengagePredictions.steerOverrideProbs = np.zeros(5, dtype=np.float32).tolist()

Loading…
Cancel
Save