#!/usr/bin/env python3 import os, argparse, contextlib from typing import Optional, Union with contextlib.suppress(ImportError): import tiktoken from tinygrad import Tensor, TinyJit, Device, GlobalCounters, Variable, dtypes from tinygrad.ops import UOp from tinygrad.helpers import Timing, DEBUG, JIT, getenv, fetch, colored, trange from tinygrad.nn import Embedding, Linear, LayerNorm from tinygrad.nn.state import gguf_load, torch_load, load_state_dict, get_state_dict MAX_CONTEXT = getenv("MAX_CONTEXT", 128) HALF = getenv("HALF") class Attention: def __init__(self, dim, n_heads): self.c_attn = Linear(dim, 3*dim, bias=True) self.c_proj = Linear(dim, dim, bias=True) self.n_heads = n_heads self.dim = dim self.head_dim = dim // n_heads def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]) -> Tensor: if mask is not None or start_pos.val == 0: # no symbolic shape qkv when consuming prompts start_pos = start_pos.val if HALF: x = x.half() xqkv = self.c_attn(x) xq, xk, xv = [xqkv.shrink((None, None, (i*self.dim, (i+1)*self.dim))).reshape(None, None, self.n_heads, self.head_dim) for i in range(3)] bsz, seqlen, _, _ = xq.shape # create kv cache if not hasattr(self, "cache_kv"): self.cache_kv = Tensor.zeros(2, bsz, MAX_CONTEXT, self.n_heads, self.head_dim, dtype=x.dtype).contiguous().realize() # update the cache self.cache_kv.shrink((None, None,(start_pos,start_pos+seqlen),None,None)).assign(Tensor.stack(xk, xv)).realize() if start_pos > 0: keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None)) values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None)) else: keys = xk values = xv xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2) return self.c_proj(xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2).reshape(bsz, seqlen, self.dim)) class FeedForward: def __init__(self, dim, hidden_dim): self.c_fc = Linear(dim, hidden_dim, bias=True) self.c_proj = Linear(hidden_dim, dim, bias=True) def __call__(self, x:Tensor) -> Tensor: return self.c_proj(self.c_fc(x).gelu()) class TransformerBlock: def __init__(self, dim, n_heads, norm_eps): self.attn = Attention(dim, n_heads) self.mlp = FeedForward(dim, 4*dim) self.ln_1 = LayerNorm(dim, norm_eps) self.ln_2 = LayerNorm(dim, norm_eps) def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]): h = x + self.attn(self.ln_1(x), start_pos, mask).float() return (h + self.mlp(self.ln_2(h))) class Transformer: def __init__(self, dim, n_heads, n_layers, norm_eps, vocab_size, max_seq_len=1024): self.vocab_size = vocab_size self.wte = Embedding(vocab_size, dim) self.wpe = Embedding(max_seq_len, dim) self.h = [TransformerBlock(dim, n_heads, norm_eps) for _ in range(n_layers)] self.ln_f = LayerNorm(dim, norm_eps) self.lm_head = Linear(dim, vocab_size, bias=False) self.forward_jit = TinyJit(self.forward) def forward(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0): if not hasattr(self, 'allpos'): self.allpos = Tensor.arange(0, MAX_CONTEXT).reshape(1, -1).realize() if isinstance(tokens, UOp): seqlen = 1 tok_emb = self.wte.weight.shrink(((tokens, tokens+1), None)) else: seqlen = tokens.shape[1] tok_emb = self.wte(tokens) pos_emb = self.wpe(self.allpos.shrink((None, (start_pos, start_pos+seqlen)))) h = tok_emb + pos_emb if HALF: h = h.half() mask = Tensor.full((1, 1, seqlen, start_pos.val+seqlen), float("-inf"), dtype=h.dtype).triu(start_pos.val+1) if seqlen > 1 else None for hi in self.h: h = hi(h, start_pos, mask) logits = self.lm_head(self.ln_f(h)) if logits.shape[1] == 0: # special case for empty prompt logits = Tensor.ones((logits.shape[0], self.vocab_size), dtype=logits.dtype, device=logits.device) else: logits = logits[:, -1, :] if temperature < 1e-6: ret = logits.argmax(-1) else: ret = (logits / temperature).softmax().multinomial() return ret.flatten().realize() def __call__(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0) -> Tensor: forward = (self.forward_jit if JIT and (isinstance(tokens, UOp) or tokens.shape[1] == 1) else self.forward) return forward(tokens, start_pos, temperature) VOCAB_SIZE = 50257 MODEL_PARAMS = { 'gpt2': dict(n_layers=12, n_heads=12, dim=768, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 124M params 'gpt2-medium': dict(n_layers=24, n_heads=16, dim=1024, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 350M params 'gpt2-large': dict(n_layers=36, n_heads=20, dim=1280, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 774M params 'gpt2-xl': dict(n_layers=48, n_heads=25, dim=1600, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 1558M params } class GPT2: @staticmethod def build(model_size="gpt2"): tokenizer = tiktoken.get_encoding("gpt2") model = Transformer(**MODEL_PARAMS[model_size]) weights = torch_load(fetch(f'https://huggingface.co/{model_size}/resolve/main/pytorch_model.bin')) # special treatment for the Conv1D weights we need to transpose transposed = ('attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight') for k in weights: if k.endswith(transposed): weights[k] = weights[k].T # lm head and wte are tied weights['lm_head.weight'] = weights['wte.weight'] load_state_dict(model, weights) if HALF: for l in get_state_dict(model).values(): l.replace(l.half().realize()) return GPT2(model, tokenizer) @staticmethod def build_gguf(model_size: str): q_type = model_size[len("gpt2_gguf_"):].upper() fn = fetch(f"https://huggingface.co/PrunaAI/gpt2-GGUF-smashed/resolve/main/gpt2.{q_type}.gguf?download=true") gguf_tensor = Tensor.empty(os.stat(fn).st_size, dtype=dtypes.uint8, device=f"disk:{fn}").to(Device.DEFAULT) kv_data, state_dict = gguf_load(gguf_tensor) gpt2_params = { "dim": kv_data["gpt2.embedding_length"], "n_heads": kv_data["gpt2.attention.head_count"], "n_layers": kv_data["gpt2.block_count"], "norm_eps": kv_data["gpt2.attention.layer_norm_epsilon"], "vocab_size": VOCAB_SIZE, "max_seq_len": kv_data["gpt2.context_length"], } def _remap_gguf_key(key: str): replaces = [ ("blk.", "h."), (".attn_qkv.bias", ".attn.c_attn.bias"), (".attn_qkv.weight", ".attn.c_attn.weight"), (".ffn_norm.bias", ".ln_2.bias"), (".ffn_norm.weight", ".ln_2.weight"), (".attn_norm.bias", ".ln_1.bias"), (".attn_norm.weight", ".ln_1.weight"), (".attn_output.bias", ".attn.c_proj.bias"), (".attn_output.weight", ".attn.c_proj.weight"), (".ffn_up.bias", ".mlp.c_fc.bias"), (".ffn_up.weight", ".mlp.c_fc.weight"), (".ffn_down.bias", ".mlp.c_proj.bias"), (".ffn_down.weight", ".mlp.c_proj.weight"), ("token_embd.weight", "wte.weight"), ("output.weight", "lm_head.weight"), ("output_norm.bias", "ln_f.bias"), ("output_norm.weight", "ln_f.weight"), ("position_embd.weight", "wpe.weight"), ] for ostr, ns in replaces: key = key.replace(ostr, ns) return key state_dict = { _remap_gguf_key(k): v for k, v in state_dict.items() } model = Transformer(**gpt2_params) load_state_dict(model, state_dict) return GPT2(model, tiktoken.get_encoding("gpt2")) def __init__(self, model, tokenizer): self.model = model self.tokenizer = tokenizer def generate(self, prompt:str, max_length:int, temperature:float, timing:bool=False, batch_size:int=1): prompt_tokens = self.tokenizer.encode(prompt, allowed_special={"<|endoftext|>"}) toks = [prompt_tokens[:] for _ in range(batch_size)] start_pos = 0 for _ in trange(max_length, disable=(timing==True)): GlobalCounters.reset() if timing: print("") st = GlobalCounters.time_sum_s with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+ f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+ (f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=timing): if batch_size == 1 and len(toks[0][start_pos:]) == 1: tokens = Variable("tokens", 0, VOCAB_SIZE).bind(toks[0][start_pos]) else: tokens = Tensor([x[start_pos:] for x in toks]) tok = self.model(tokens, Variable("start_pos", 1 if start_pos else 0, MAX_CONTEXT).bind(start_pos), temperature).tolist() start_pos = len(toks[0]) for i,t in enumerate(tok): toks[i].append(t) return [self.tokenizer.decode(x) for x in toks] # **** main code **** if __name__ == "__main__": Tensor.no_grad = True print(f"using {Device.DEFAULT} backend") default_prompt = "What is the answer to life, the universe, and everything?" parser = argparse.ArgumentParser(description='Run GPT2 in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--prompt', type=str, default=default_prompt, help="Phrase to start with") parser.add_argument('--count', type=int, default=100, help="Max number of tokens to generate") parser.add_argument('--temperature', type=float, default=0.8, help="Temperature in the softmax") parser.add_argument('--model_size', type=str, default="gpt2-medium", help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]") parser.add_argument('--timing', action='store_true', help="Print timing per token") parser.add_argument('--seed', type=int, help="Set the random seed") parser.add_argument('--batch_size', type=int, default=1, help="Set the input batch size") parser.add_argument('--benchmark', type=int, default=-1, help="Benchmark GPT with the given number of tokens") parser.add_argument('--noshow', action='store_true', help="Don't show the output") args = parser.parse_args() if args.seed is not None: Tensor.manual_seed(args.seed) print(f"using {args.model_size}") gpt2 = GPT2.build_gguf(args.model_size) if args.model_size.startswith("gpt2_gguf_") else GPT2.build(args.model_size) if args.benchmark != -1: gpt2.model(Tensor.rand(args.batch_size, args.benchmark), Variable("a", 0, MAX_CONTEXT).bind(0)).realize() else: texts = gpt2.generate(args.prompt, args.count, args.temperature, timing=args.timing, batch_size=args.batch_size) if not args.noshow: print('Generating text...') if len(texts) == 1: print(texts[0]) else: for i,text in enumerate(texts): print(colored(f"Response {i}:", "green"), text) # validate output! if args.temperature == 0 and args.model_size == "gpt2-medium" and args.count == 10: expected = { default_prompt: "What is the answer to life, the universe, and everything?\n\nThe answer is that we are all one", "Hello.": "Hello. I'm a little late to the party, but", } try: assert texts[0] == expected[args.prompt] print(colored("output validated", "green")) except KeyError: pass