from examples.mlperf.metrics import dice_score from tinygrad import Tensor def dice_ce_loss(pred, tgt): ce = pred.permute(0, 2, 3, 4, 1).sparse_categorical_crossentropy(tgt.squeeze(1)) dice = (1.0 - dice_score(pred, tgt, argmax=False, to_one_hot_x=False)).mean() return (dice + ce) / 2 def sigmoid_focal_loss(pred:Tensor, tgt:Tensor, alpha:float=0.25, gamma:float=2.0, reduction:str="none") -> Tensor: assert reduction in ["mean", "sum", "none"], f"unsupported reduction {reduction}" p, ce_loss = pred.sigmoid(), pred.binary_crossentropy_logits(tgt, reduction="none") p_t = p * tgt + (1 - p) * (1 - tgt) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * tgt + (1 - alpha) * (1 - tgt) loss = loss * alpha_t if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss def l1_loss(pred:Tensor, tgt:Tensor, reduction:str="none") -> Tensor: assert reduction in ["mean", "sum", "none"], f"unsupported reduction {reduction}" loss = (pred - tgt).abs() if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss