import argparse import os import sys from transformers import AutoTokenizer from pathlib import Path from typing import Dict, Union from extra.models.llama import Transformer, convert_from_huggingface, fix_bf16 from examples.llama3 import load from tinygrad import nn, Tensor from tinygrad.helpers import fetch, colored, GlobalCounters, Timing, DEBUG from tinygrad.nn.state import load_state_dict, get_parameters MODELS = { "32B": { "model_params": {"dim": 5120, "n_heads": 40, "n_kv_heads": 8, "n_layers": 64, "norm_eps": 1e-5, "rope_theta": 1000000, "vocab_size": 152064, "hidden_dim": 27648}, "total_num_weights": 17, "tokenizer": "Qwen/QwQ-32B-Preview" } } def download_weights(total_num_weights:int) -> Path: model = fetch("https://huggingface.co/Qwen/QwQ-32B-Preview/resolve/main/model.safetensors.index.json?download=true", "model.safetensors.index.json", subdir=(subdir:="qwq_32b_preview")) for i in range(1, total_num_weights + 1): filename = f"model-{i:05d}-of-{total_num_weights:05d}.safetensors" fetch(f"https://huggingface.co/Qwen/QwQ-32B-Preview/resolve/main/{filename}?download=true", filename, subdir=subdir) return Path(os.path.dirname(model)) def load_model(model_path:Path, model_params:Dict[str, Union[int, float]]) -> Transformer: # build model model = Transformer(**model_params, linear=nn.Linear) # update layers to add bias updated_layers = [] for layer in model.layers: head_dim = model_params["dim"] // model_params["n_heads"] layer.attention.wq = nn.Linear(model_params["dim"], model_params["n_heads"] * head_dim, bias=True) layer.attention.wk = nn.Linear(model_params["dim"], model_params["n_kv_heads"] * head_dim, bias=True) layer.attention.wv = nn.Linear(model_params["dim"], model_params["n_kv_heads"] * head_dim, bias=True) updated_layers.append(layer) model.layers = updated_layers # load weights weights = fix_bf16(convert_from_huggingface(load(str(model_path / "model.safetensors.index.json")), model, model_params["n_heads"], model_params["n_kv_heads"], permute_layers=False)) # replace weights in model load_state_dict(model, weights, strict=False, consume=True) return model if __name__ == "__main__": Tensor.no_grad = True parser = argparse.ArgumentParser(description="Run QwQ in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--size", choices=["32B"], default="32B", help="Model size") parser.add_argument("--count", type=int, default=30, help="Max number of tokens to generate") parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax") parser.add_argument("--prompt", type=str, default="Hello.", help="Phrase to start with") parser.add_argument("--weights", type=str, default=None, help="Path to the downloaded weights") parser.add_argument("--timing", action="store_true", help="Print timing per token") args = parser.parse_args() model_info = MODELS[args.size] model_path = Path(args.weights) if args.weights else download_weights(model_info["total_num_weights"]) transformer = load_model(model_path, model_info["model_params"]) tokenizer = AutoTokenizer.from_pretrained(model_info["tokenizer"]) param_bytes = sum(x.lazydata.size * x.dtype.itemsize for x in get_parameters(transformer)) outputted = args.prompt start_pos, toks = 0, tokenizer(outputted)["input_ids"] print(outputted, end="", flush=True) tok_tensor = None for i in range(args.count): GlobalCounters.reset() if args.timing: print("") st = GlobalCounters.time_sum_s next_tok = Tensor([toks[start_pos:]]) if tok_tensor is None or (len(toks)-start_pos) > 1 else tok_tensor.reshape(1, 1) with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/s, {GlobalCounters.global_mem/x:.2f} GB/s, param {param_bytes/x:.2f} GB/s"): with Timing("enqueue in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "") + f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB" + (f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s, param {param_bytes*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=args.timing): tok_tensor = transformer(next_tok, start_pos, args.temperature) tok = tok_tensor.item() # use the kv cache start_pos = len(toks) # add the new token toks.append(tok) cur = tokenizer.decode(toks, skip_special_tokens=True) sys.stdout.write(cur[len(outputted):]) sys.stdout.flush() outputted = cur if args.temperature == 0: text = tokenizer.decode(toks) key = (args.size, args.count, args.prompt) expected = { ("32B", 10, "Hello."): "Hello. I'm trying to make a program that will read", ( "32B", 50, "Can you tell me more about machine learning?" ): "Can you tell me more about machine learning? Sure, I'd be happy to help! Machine learning is a subset of artificial intelligence that focuses on building systems that can learn from data and make predictions or decisions without being explicitly programmed to do so. It's a fascinating field with a lot of real" } try: assert text == expected[key], f"invalid output: `{colored(text, 'red')}` != `{expected[key]}`" print("\n" + colored("output validated", "green")) except KeyError: pass