from typing import Tuple, Dict, List, Optional from tinygrad.dtype import DType from tinygrad.renderer import ProgramSpec from tinygrad.tensor import Device, Tensor from tinygrad.engine.jit import TinyJit from tinygrad.nn.state import get_state_dict from tinygrad.helpers import Context from tinygrad.dtype import dtypes from tinygrad.ops import Ops import json from collections import OrderedDict EXPORT_SUPPORTED_DEVICE = ["WEBGPU", "CPU", "CUDA", "GPU"] def compile_net(run:TinyJit, special_names:Dict[int,str]) -> Tuple[Dict[str,str],List[Tuple[str,List[str],List[int]]],Dict[str,Tuple[int,DType,int]],Dict[str,Tensor]]: functions, bufs, bufs_to_save, statements, bufnum = {}, {}, {}, [], 0 for ji in run.jit_cache: fxn: ProgramSpec = ji.prg.p functions[fxn.function_name] = fxn.src # NOTE: this assumes all with the same name are the same cargs = [] for i,arg in enumerate(ji.bufs): key = id(arg) if key not in bufs: if key in special_names: bufs[key] = (special_names[key], arg.size*arg.dtype.itemsize, arg.dtype, key) else: bufs[key] = (f"buf_{bufnum}", arg.size*arg.dtype.itemsize, arg.dtype, key) bufnum += 1 if i > 0: bufs_to_save[bufs[key][0]] = arg # if first usage of a buffer is not an output, and it's not a special name cargs.append(bufs[key][0]) cargs += [var for var in fxn.vars if getattr(var, "op", None) is Ops.DEFINE_VAR] # symbolic vars; is it necessary or sufficient to check for DEFINE_VAR? statements.append((fxn.function_name, cargs, fxn.global_size, fxn.local_size)) return functions, statements, {name:(size, dtype, key) for (name,size,dtype,key) in bufs.values()}, bufs_to_save def jit_model(model, *args) -> Tuple[TinyJit,Dict[int,str]]: assert hasattr(model, "forward") or callable(model), "model needs a forward function" @TinyJit def run(*x): out = model.forward(*x) if hasattr(model, "forward") else model(*x) assert isinstance(out, (tuple, list, Tensor)), "model output must be a Tensor, tuple, or a list of Tensors for export" out = [out] if isinstance(out, Tensor) else out return [o.realize() for o in out] # twice to run the JIT for _ in range(2): the_output = run(*args) special_names = {} # hack to put the inputs back for (j,i),idx in run.input_replace.items(): realized_input = args[idx].lazydata.base.realized run.jit_cache[j].bufs[i] = realized_input special_names[id(realized_input)] = f'input{idx}' # TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret) for i, output in enumerate(the_output): special_names[id(output.lazydata.base.realized)] = f'output{i}' return run, special_names def export_model_clang(functions:Dict[str,str], statements:Dict[str,Tuple[str,int,int]], bufs:Dict[str,Tuple[str,int,int]], bufs_to_save:Dict[str,Tensor], input_names:List[str], output_names:List[str], weight_names={}, model_name="model", symbolic_vars={}, wasm=False) -> str: headers = ["#include "] cprog = list(functions.values()) dtype_map = {dtypes.int: "int", dtypes.float: "float", dtypes.uchar: "unsigned char", dtypes.char: "signed char", dtypes.half: "__fp16", dtypes.uint: "unsigned int"} inputs = [(name, dtype_map[bufs[name][1]], bufs[name][0]) for name in input_names + list(symbolic_vars.values())] outputs = [(name, dtype_map[bufs[name][1]], bufs[name][0]) for name in output_names] forward_args = ",".join(f"{dtype}{'*' if name not in symbolic_vars.values() else ''} {name}" for name,dtype,_ in (outputs+inputs if wasm else inputs+outputs)) if not wasm: for name,cl in bufs_to_save.items(): weight = ''.join(["\\x%02X"%x for x in bytes(cl._buf)]) cprog.append(f"unsigned char {name}_data[] = \"{weight}\";") cprog += [f"{dtype_map[dtype]} {name}[{len}];" if name not in bufs_to_save else f"{dtype_map[dtype]} *{name} = ({dtype_map[dtype]} *){name}_data;" for name,(len,dtype,_key) in bufs.items() if name not in input_names+output_names] cprog += [f"void net({forward_args}) {{"] + [f"{name}({', '.join(args)});" for (name, args, _global_size, _local_size) in statements] + ["}"] return '\n'.join(headers + cprog) else: if bufs_to_save: headers += ["#include "] bufs_to_save = {k:v for k,v in bufs.items() if v[2] in weight_names} # causes random seeds to be set as zeroes, not exported as a model weight buf_to_name = OrderedDict((buf_name, {"name": weight_names[data[2]], "idx": i}) for i, (buf_name, data) in enumerate(bufs_to_save.items())) cprog.append(f"void* bufs[{len(buf_to_name)}];") cprog.append(f"""void set_buf(size_t index, void* ptr) {{\n bufs[index] = ptr;\n}}""") for name in set(bufs.keys()) - set(bufs_to_save.keys()) - set(input_names + output_names): n_bytes, dtype, _ = bufs[name] cprog += [f"{dtype_map[dtype]} {name}[{n_bytes // dtype.itemsize}];"] cprog += [f"void net({forward_args})"] + ["{"] get_weight_ptr = lambda x: f"({dtype_map[bufs_to_save[x][1]]} *)bufs[{buf_to_name[x]['idx']}]" if x in bufs_to_save else x cprog += [f" {name}({', '.join(map(get_weight_ptr, args))});" for (name, args, _global_size, _local_size) in statements] + ["}"] weightMapping = "" if not bufs_to_save else f"""\nconst weightNames = [{", ".join([f'"{weight_name}"' for weight_name in [v["name"] for v in buf_to_name.values()]])}]; const {model_name}_name_to_id = Object.fromEntries(weightNames.map((name, index) => [name, index]));\n""" top = f"""import {model_name}Module from './{model_name}.js'{weightMapping}""" whitespace = "\n " js_wrapper = f"""{top}\nvar {model_name} = async function() {{ const wasm = await {model_name}Module(); {whitespace.join(f"const {name}Ptr = wasm._malloc({n_bytes});" for name, _, n_bytes in outputs+inputs if name not in symbolic_vars.values())} return {{ run: ({",".join(name for name,_,_ in inputs)}) => {{ {(whitespace + " ").join(f"wasm.HEAPU8.set({name}, {name}Ptr);" for name,_,_ in inputs if name not in symbolic_vars.values())} wasm._net({", ".join(f"{name}{'Ptr' if name not in symbolic_vars.values() else ''}" for name,_,_ in outputs+inputs)}); {(whitespace + " ").join(f"const {name} = wasm.HEAPU8.slice({name}Ptr, {name}Ptr + {n_bytes});" for name,_,n_bytes in outputs)} return [{", ".join(f"{name}" for name,_,_ in outputs)}]; }}, wasm: wasm }} }}\nexport {{ {model_name}, {model_name}_name_to_id }};""" return '\n'.join(headers + cprog), js_wrapper def dtype_to_js_type(dtype: DType) -> str: return f"{'Uint' if dtype in dtypes.uints else 'Int' if (dtype in dtypes.sints or dtype == dtypes.bool) else 'Float'}{8*dtype.itemsize}Array" def export_model_webgpu(functions, statements, bufs, weight_names, input_names, output_names, model_name, symbolic_vars={}, stream_weights=False) -> Tuple[str,int,int]: kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()]) kernel_names = ', '.join([name for (name, _, _, _) in statements]) input_names += list(symbolic_vars.values()) input_buffer_types = [dtype_to_js_type(bufs[inp_name][1]) for inp_name in input_names] output_buffer_types = [dtype_to_js_type(bufs[out_name][1]) for out_name in output_names] buf_type = lambda x: "uniform" if x in set(symbolic_vars.values()) else "storage" create_bind_group_layouts = ",".join([ "device.createBindGroupLayout({{entries: [{{binding: 0, visibility: GPUShaderStage.COMPUTE, buffer: {{ type: 'uniform' }}}}, {}]}})".format( ",".join([f"{{binding: {argIdx+1}, visibility: GPUShaderStage.COMPUTE, buffer: {{ type: '{buf_type(argName)}' }} }}" for argIdx, argName in enumerate(args)]) ) for _, (_, args, _, _) in enumerate(statements) ]) layouts = f"const layouts=[{create_bind_group_layouts}]" kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, pipelines[{i}], layouts[{i}], infinityBuf, [{', '.join(args)}], [{', '.join(str(x) for x in global_size)}]);" for i, (_name, args, global_size, _local_size) in enumerate(statements) ]) buf_type = lambda x: "createUniformBuf" if x in set(uop.arg[0] for uop in symbolic_vars) else "createEmptyBuf" map_to_external_weight = lambda _key: f"state_dict['{weight_names[_key]}']" if stream_weights else f"getTensorBuffer(safetensor, metadata['{weight_names[_key]}'])" _bufs = '\n '.join([f"const {name} = " + (f"{buf_type(_key)}(device, {size});" if _key not in weight_names else f"createWeightBuf(device, {size}, {map_to_external_weight(_key)})") + ";" for name,(size,dtype,_key) in bufs.items()]) gpu_write_bufs = '\n '.join([f"const gpuWriteBuffer{i} = device.createBuffer({{size:{input_name}.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});" for i,input_name in enumerate(input_names)]) input_writers = '\n '.join([f"await gpuWriteBuffer{i}.mapAsync(GPUMapMode.WRITE);\n new {input_buffer_types[i]}(gpuWriteBuffer{i}.getMappedRange()).set(" + f'_{inp_name});' + f"\n gpuWriteBuffer{i}.unmap();\n commandEncoder.copyBufferToBuffer(gpuWriteBuffer{i}, 0, {inp_name}, 0, gpuWriteBuffer{i}.size);" for i,inp_name in enumerate(input_names)]) gpu_read_bufs = '\n '.join([f"const gpuReadBuffer{i} = device.createBuffer({{size:{output_name}.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});" for i,output_name in enumerate(output_names)]) outbuf_copies = '\n '.join([f"commandEncoder.copyBufferToBuffer({output_name}, 0, gpuReadBuffer{i}, 0, output{i}.size);" for i,output_name in enumerate(output_names)]) output_readers = '\n '.join([f"await gpuReadBuffer{i}.mapAsync(GPUMapMode.READ);\n const resultBuffer{i} = new {output_buffer_types[i]}(gpuReadBuffer{i}.size/{bufs[output_names[i]][1].itemsize});\n resultBuffer{i}.set(new {output_buffer_types[i]}(gpuReadBuffer{i}.getMappedRange()));\n gpuReadBuffer{i}.unmap();" for i in range(len(output_names))]) output_return = '[{}]'.format(",".join([f'resultBuffer{i}' for i in range(len(output_names))])) getTensorMetadata = f"""\nconst getTensorMetadata = (safetensorBuffer) => {{ const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true)); const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength))); return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}])); }};\n""" if not stream_weights else "" return f""" const {model_name} = (() => {{ const getTensorBuffer = (safetensorBuffer, tensorMetadata) => {{ return safetensorBuffer.subarray(...tensorMetadata.data_offsets); }}; {getTensorMetadata} const createEmptyBuf = (device, size) => {{ return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); }}; const createUniformBuf = (device, size) => {{ return device.createBuffer({{size, usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST}}) }} const createInfinityUniformBuf = (device) => {{ const size = 4; const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); new Float32Array(buf.getMappedRange())[0] = Infinity; buf.unmap(); return buf; }}; const createWeightBuf = (device, size, data) => {{ const buf = device.createBuffer({{ size, usage: GPUBufferUsage.STORAGE{" | GPUBufferUsage.COPY_DST" if stream_weights else ", mappedAtCreation: true"} }}); {"data.bytes = buf;" if stream_weights else "new Uint8Array(buf.getMappedRange()).set(data); buf.unmap();"} return buf; }}; const addComputePass = (device, commandEncoder, pipeline, layout, infinityUniformBuf, bufs, workgroup) => {{ const bindGroup = device.createBindGroup({{ layout: layout, entries: [ {{ binding: 0, resource: {{ buffer: infinityUniformBuf }} }}, ...bufs.map((buffer, index) => ({{ binding: index + 1, resource: {{ buffer }} }})) ] }}); const passEncoder = commandEncoder.beginComputePass(); passEncoder.setPipeline(pipeline); passEncoder.setBindGroup(0, bindGroup); passEncoder.dispatchWorkgroups(...workgroup); passEncoder.end(); }}; {kernel_code} const setupNet = async (device, {"state_dict" if stream_weights else "safetensor"}) => {{ {"const metadata = getTensorMetadata(safetensor);" if not stream_weights else ""} const infinityBuf = createInfinityUniformBuf(device); {layouts} {_bufs} {gpu_write_bufs} {gpu_read_bufs} const kernels = [{kernel_names}]; const pipelines = await Promise.all(kernels.map(async (name, i) => {{ return await device.createComputePipelineAsync({{ layout: device.createPipelineLayout({{ bindGroupLayouts: [layouts[i]], }}), compute: {{ module: device.createShaderModule({{ code: name, }}), entryPoint: "main", }}, }}); }})) return async ({",".join([f"_{input_name}" for input_name in input_names])}) => {{ const commandEncoder = device.createCommandEncoder(); {input_writers} {kernel_calls} {outbuf_copies} const gpuCommands = commandEncoder.finish(); device.queue.submit([gpuCommands]); {output_readers} return {output_return}; }} }} const load = async (device, weight_path) => {{ return await fetch(weight_path).then(x => x.arrayBuffer()).then(x => setupNet(device, new Uint8Array(x))); }} return {{ load, setupNet }}; }})(); export default {model_name}; """ def export_model(model, target:str, *inputs, model_name: Optional[str] = "model", stream_weights=False): assert Device.DEFAULT in EXPORT_SUPPORTED_DEVICE, "only WEBGPU, CPU, CUDA, GPU, METAL are supported" with Context(JIT=2): run,special_names = jit_model(model, *inputs) functions, statements, bufs, bufs_to_save = compile_net(run, special_names) state = get_state_dict(model) weight_names = {id(x.lazydata.base.realized): name for name, x in state.items()} input_names = [name for _,name in special_names.items() if "input" in name] output_names = [name for _,name in special_names.items() if "output" in name] # handle symbolic variables; TODO: refactor to fix some of this stuff upstream in tinygrad symbolic_vars = OrderedDict() for i, (_, args, global_size, _) in enumerate(statements): for j, var in enumerate(args): if getattr(var, "op", None) is Ops.DEFINE_VAR and isinstance(getattr(var, "arg", None), tuple) and isinstance(var.arg[0], str): if var not in symbolic_vars: symbolic_vars[var] = var.arg[0] bufs[symbolic_vars[var]] = (var.dtype.itemsize, var.dtype, symbolic_vars[var]) statements[i][1][j] = symbolic_vars[var] if global_size: for j, dim in enumerate(global_size): if getattr(dim, "op", None) is Ops.ADD and len(dim.src) == 2 and {dim.src[0].op, dim.src[1].op} == {Ops.DEFINE_VAR, Ops.CONST}: name, val = dim.src if dim.src[1].op is Ops.CONST else reversed(dim.src) global_size[j] = f"_{name.arg[0]}[0] + {val.arg}" prg = "" if target == "clang": prg = export_model_clang(functions, statements, bufs, bufs_to_save, input_names, output_names) elif target == "wasm": return export_model_clang(functions, statements, bufs, bufs_to_save, input_names, output_names, weight_names, model_name, symbolic_vars, wasm=True) elif target == "webgpu": prg = export_model_webgpu(functions, statements, bufs, weight_names, input_names, output_names, model_name, symbolic_vars, stream_weights) else: prg = json.dumps({ "backend": Device.DEFAULT, "inputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in input_names], "outputs": [{ "size": bufs[name][0], "dtype": bufs[name][1].name } for name in output_names], "functions": functions, "statements": [{ "kernel": kernel, "args": args, "global_size": global_size, "local_size": local_size } for (kernel, args, global_size, local_size) in statements], "buffers": { name: { "size": size, "dtype": dtype.name, "id": weight_names[_key] if _key in weight_names else "" } for name, (size,dtype,_key) in bufs.items() if name not in ["input", "outputs"] } }) return prg, {input:bufs[input][0] for input in input_names}, {output:bufs[output][0] for output in output_names}, state