from tinygrad import Tensor, Device, Context, GlobalCounters, dtypes from tinygrad.uop.ops import UOp, Ops, KernelInfo, graph_rewrite, AxisType, PatternMatcher, UPat from tinygrad.engine.realize import CompiledRunner, ExecItem, get_program from tinygrad.dtype import AddrSpace from tinygrad.schedule.kernelize import merge_views, view_left from tinygrad.helpers import getenv, colored, prod, unwrap from tinygrad.shape.shapetracker import ShapeTracker, View from tinygrad.shape.view import strides_for_shape from tinygrad.opt.kernel import axis_colors def to_colored(full_shape, axis_types): return '_'.join([colored(str(s), axis_colors[at]) for s,at in zip(full_shape, axis_types)]) N = 4096 run_count = 5 BN = 128 BM = 128 BK = 8 TN = 4 TM = 4 # NOTE: this is from testgrad # change reduceop axes and input ShapeTrackers, view gets replaced with a reshape. # src->r->view --> src->view->r def swizzle_reduceop(src:UOp, r:UOp, view:UOp): if r.tag is not None: return None # confirm the input is in order # TODO: replace this with a UOp that allows for nothing else then remove this permute = tuple(i for i in range(len(src.shape)) if i not in r.axis_arg)+r.axis_arg assert permute == tuple(range(len(permute))), f"reduce axis must already be in order, {permute} isn't" # append the reduce shape to each of the views prshape = prod(rshape:=src.shape[-len(r.axis_arg):]) rstrides = strides_for_shape(rshape) nv = [View.create(v.shape+rshape, tuple(x*prshape for x in v.strides)+rstrides, v.offset*prshape, v.mask+tuple((0,s) for s in rshape) if v.mask is not None else None) for v in unwrap(view.st).views] # no reshape required with shrinking REDUCE_AXIS return UOp(Ops.REDUCE_AXIS, r.dtype, (src.view(ShapeTracker(tuple(nv))),), (r.arg[0], tuple(range(len(view.shape), len(view.shape) + len(r.axis_arg))))) pm = PatternMatcher([ (UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r"),), name="view"), swizzle_reduceop), ]) def top_spec_kernel3(): a = Tensor.empty(N,N) b = Tensor.empty(N,N) c = a@b sink = c.schedule()[-1].ast L = 16 sink = sink.reshape((N//L, L, N//L, L)) #.lift({0:UOp.range(dtypes.int, N//BM, 0), 2:UOp.range(dtypes.int, N//BN, 1)}) sink = graph_rewrite(sink, view_left+pm) axis_types = (AxisType.GLOBAL, AxisType.LOCAL, AxisType.GLOBAL, AxisType.LOCAL, AxisType.REDUCE) return sink.replace(arg=KernelInfo(name="top_"+to_colored(sink.full_shape, axis_types), axis_types=axis_types)) def hl_spec_kernel3(): nbIterWaveM = 2 nbIterWaveN = 2 # define buffers # TODO: remove these views once the defines have a shape a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1).view(ShapeTracker.from_shape((N,N))) b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2).view(ShapeTracker.from_shape((N,N))).permute((1,0)) c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0).view(ShapeTracker.from_shape((N,N))) As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM, AddrSpace.LOCAL), arg=0).view(ShapeTracker.from_shape((BK, BM))).permute((1,0)) Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1).view(ShapeTracker.from_shape((BK, BN))).permute((1,0)) A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0).view(ShapeTracker.from_shape((nbIterWaveM * TM,))) B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1).view(ShapeTracker.from_shape((nbIterWaveN * TN,))) # shape buffers. TODO: permutes full_shape = (N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK) a = a.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, N//BK, BK)).expand(full_shape) b = b.reshape((1, 1, 1, 1, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK)).expand(full_shape) c = c.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, 1)) As = As.reshape((1, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, 1, BK)).expand(full_shape) Bs = Bs.reshape((1, 1, 1, 1, 1, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, BK)).expand(full_shape) A_col = A_col.reshape((1, nbIterWaveM, 1, TM, 1, 1, 1, 1, 1, 1)).expand(full_shape) B_row = B_row.reshape((1, 1, 1, 1, 1, nbIterWaveN, 1, TN, 1, 1)).expand(full_shape) # U1 L2 L3 L4 L5 U6 U7 U9 L10 L11 L12 L13 U14 U15 U17 U18 U19 expanded_shape = (32, 2, 2, 2, 2, 2, 2, 2, 32, 2, 2, 2, 2, 2, 2, 2, 512, 2, 2, 2) assert len(expanded_shape) == 20 permute_a = list(range(len(expanded_shape))) permute_b = permute_a[:] # this makes all the global loads match # this can also be more simply done by rebinding the RANGEs permute_a[17:20] = [11,12,13] permute_a[11:14] = [17,18,19] permute_a[7], permute_a[10] = permute_a[10], permute_a[7] permute_a[2:7] = [3,4,5,6,2] permute_b[2:16] = [19,9,10,11,17,18,8,2,12,13,14,15,3,4] permute_b[17:20] = [5,6,7] a_permute = a.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape) As_permute = As.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape) b_permute = b.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape) Bs_permute = Bs.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape) #out = (a.load() * b.load()).r(Ops.ADD, (8, 9)) out = (As.load(As_permute.store(a_permute.load())) * Bs.load(Bs_permute.store(b_permute.load()))).r(Ops.ADD, (8, 9)) #out = (A_col.load(A_col.store(As.load(As.store(a.load())))) * B_row.load(B_row.store(Bs.load(Bs.store(b.load()))))).r(Ops.ADD, (8, 9)) axis_types = ( AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST, AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST, AxisType.REDUCE, AxisType.REDUCE) sink = c.store(out).sink(arg=KernelInfo(name="tg_"+to_colored(full_shape, axis_types), axis_types=axis_types)) sink = graph_rewrite(sink, merge_views) return sink def hand_spec_kernel3(kernel4=getenv("K4", 0), kernel5=getenv("K5", 0)): BLOCK_SIZE = 128 if kernel5 else 256 nbWaves = BLOCK_SIZE // 32 WN = 128 if kernel5 else 64 WM = BN * BM // nbWaves // WN nbWaveX = BN // WN nbWaveY = BM // WM threadIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("lidx0", BLOCK_SIZE)) waveIndex = threadIdx_x // 32 waveIdx = waveIndex % nbWaveX waveIdy = waveIndex // nbWaveX indexInWave = threadIdx_x % 32 nbThreadXPerWave = 8 nbThreadYPerWave = 4 idxInWave = indexInWave % nbThreadXPerWave idyInWave = indexInWave // nbThreadXPerWave nbIterWaveN = WN // (nbThreadXPerWave * TN) nbIterWaveM = WM // (nbThreadYPerWave * TM) SUBWN = WN // nbIterWaveN SUBWM = WM // nbIterWaveM # Thread mapping to read BKxBN block from A rAIdx = threadIdx_x % BK rAIdy = threadIdx_x // BK # Thread mapping to read BNxBK block from B rBIdx = threadIdx_x % BN rBIdy = threadIdx_x // BN strideReadB = BLOCK_SIZE // BN strideReadA = BLOCK_SIZE // BK nbReadsB = BN * BK // BLOCK_SIZE nbReadsA = BM * BK // BLOCK_SIZE blockIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx0", N//BN)) blockIdx_y = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx1", N//BM)) a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1) b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2) c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0) A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0) B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1) BM_As_stride = (BM+4) if kernel5 else BM As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM_As_stride, AddrSpace.LOCAL), arg=0) Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1) c_regs = UOp(Ops.DEFINE_REG, dtypes.float.ptr(TM * nbIterWaveM * TN * nbIterWaveN), arg=2) i = UOp.range(dtypes.int, c_regs.dtype.size, 16) init_store = c_regs[i].store(UOp.const(dtypes.float, 0.0), i) if kernel4: regA = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsA, AddrSpace.REG), arg=3) regB = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsB, AddrSpace.REG), arg=4) # initial load from globals into locals (0) kId = 0 # load from globals into locals i = UOp.range(dtypes.int, nbReadsB, 0) index_x = BN * blockIdx_x + rBIdx index_y = rBIdy + i * strideReadB + kId Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i) i = UOp.range(dtypes.int, nbReadsA, 1) index_x = rAIdx + kId index_y = BM * blockIdx_y + rAIdy + i * strideReadA As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i) # iterate over the middle chunk kId_range = UOp.range(dtypes.int, N//BK-1, 2) kId = kId_range*BK barrier = UOp.barrier(As_store, Bs_store) # load from globals into registers (next round) i = UOp.range(dtypes.int, nbReadsB, 3) index_x = BN * blockIdx_x + rBIdx index_y = rBIdy + i * strideReadB + kId + BK regB_store = regB[i].store(b[N * index_y + index_x].load(), i) i = UOp.range(dtypes.int, nbReadsA, 4) index_x = rAIdx + kId + BK index_y = BM * blockIdx_y + rAIdy + i * strideReadA regA_store = regA[i].store(a[N * index_y + index_x].load(), i) def inner_loop(first_range, inp_dep=()): # inner unroll k = UOp.range(dtypes.int, BK, first_range+0) # load from locals into registers iterWave = UOp.range(dtypes.int, nbIterWaveN, first_range+1) i = UOp.range(dtypes.int, TN, first_range+2) index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(*inp_dep), iterWave, i) iterWave = UOp.range(dtypes.int, nbIterWaveM, first_range+3) i = UOp.range(dtypes.int, TM, first_range+4) index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(*inp_dep), iterWave, i) # do the GEMM math iterWaveM = UOp.range(dtypes.int, nbIterWaveM, first_range+5) yt = UOp.range(dtypes.int, TM, first_range+6) iterWaveN = UOp.range(dtypes.int, nbIterWaveN, first_range+7) xt = UOp.range(dtypes.int, TN, first_range+8) x = iterWaveN * TN + xt y = iterWaveM * TM + yt c_regs_idx = c_regs[y * TN * nbIterWaveN + x] # sketchy, this should end the kId_range but it doesn't sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store), iterWaveM, iterWaveN, yt, xt, k) return sink # TODO: kId_range should endrange after a barrier sink = inner_loop(5, (barrier, regB_store, regA_store)).barrier() # load from registers into locals i = UOp.range(dtypes.int, nbReadsB, 14) index_x = BN * blockIdx_x + rBIdx index_y = rBIdy + i * strideReadB + kId + BK Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(regB[i].load(sink), i, kId_range) i = UOp.range(dtypes.int, nbReadsA, 15) index_x = rAIdx + kId + BK index_y = BM * blockIdx_y + rAIdy + i * strideReadA As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(regA[i].load(sink), i, kId_range) # final iteration without the copy sink = inner_loop(16, (UOp.barrier(Bs_store, As_store),)) else: kId_range = UOp.range(dtypes.int, N//BK, 0) kId = kId_range*BK # load from globals into locals i = UOp.range(dtypes.int, nbReadsB, 1) index_x = BN * blockIdx_x + rBIdx index_y = rBIdy + i * strideReadB + kId Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i) i = UOp.range(dtypes.int, nbReadsA, 2) index_x = rAIdx + kId index_y = BM * blockIdx_y + rAIdy + i * strideReadA As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i) barrier = UOp.barrier(As_store, Bs_store) k = UOp.range(dtypes.int, BK, 3) # load from locals into registers iterWave = UOp.range(dtypes.int, nbIterWaveN, 4) i = UOp.range(dtypes.int, TN, 5) index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(barrier), iterWave, i) iterWave = UOp.range(dtypes.int, nbIterWaveM, 6) i = UOp.range(dtypes.int, TM, 7) index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(barrier), iterWave, i) # do the GEMM math iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 8) yt = UOp.range(dtypes.int, TM, 9) iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 10) xt = UOp.range(dtypes.int, TN, 12) x = iterWaveN * TN + xt y = iterWaveM * TM + yt c_regs_idx = c_regs[y * TN * nbIterWaveN + x] sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store), iterWaveM, iterWaveN, yt, xt, k, kId_range) # store c_regs into c iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 1000) yt = UOp.range(dtypes.int, TM, 1001) iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 1002) xt = UOp.range(dtypes.int, TN, 1003) xOut = blockIdx_x * BN + waveIdx * WN + iterWaveN * SUBWN + TN * idxInWave yOut = blockIdx_y * BM + waveIdy * WM + iterWaveM * SUBWM + TM * idyInWave indexC = N * (yOut + yt) + xOut + xt sink = c[indexC].store(c_regs[TN * nbIterWaveN * (iterWaveM * TM + yt) + (iterWaveN * TN + xt)].load(sink), iterWaveM, iterWaveN, yt, xt) return sink.sink(arg=KernelInfo(name="tinygemm")) if __name__ == "__main__": HL = getenv("HL") if HL == 2: hprg = top_spec_kernel3() elif HL == 1: hprg = hl_spec_kernel3() else: hprg = hand_spec_kernel3() prg = get_program(hprg, Device.default.renderer) print(prg.src) if getenv("SRC"): exit(0) hrunner = CompiledRunner(prg) a = Tensor.randn(N, N).realize() b = Tensor.randn(N, N).realize() hc = Tensor.zeros(N, N).contiguous().realize() GlobalCounters.reset() with Context(DEBUG=2): for _ in range(run_count): tc = (a@b).realize() GlobalCounters.reset() buffers = [hc.uop.buffer, a.uop.buffer, b.uop.buffer] ei = ExecItem(hrunner, buffers) with Context(DEBUG=2): for _ in range(run_count): ei.run(wait=True) err = (hc-tc).square().mean().item() print(f"hrunner {err}") if err > 1e-06: raise RuntimeError("matmul is wrong!")