import os os.environ["METAL"] = "1" import time import numpy as np from tinygrad import Device, dtypes from tinygrad.helpers import getenv, flat_mv from tinygrad.runtime.ops_metal import MetalAllocator, MetalDevice, MetalProgram, MetalCompiler N = getenv("N", 2048) LID = 2 device = MetalDevice("METAL") metalalloc = MetalAllocator(device) a = metalalloc.alloc(N*N*4) b = metalalloc.alloc(N*N*4) c = metalalloc.alloc(N*N*4) na = np.zeros((N,N),dtype=np.float32) nb = np.random.default_rng().standard_normal(size=(N,N), dtype=np.float32) #.astype(np.int32).astype(np.float32)N nc = np.random.default_rng().standard_normal(size=(N,N), dtype=np.float32) #.astype(np.int32).astype(np.float32) metalalloc._copyin(b,nb.tobytes()) metalalloc._copyin(c,nc.tobytes()) FLOPS = N*N*N*2 BW = N*N*3*4 prog = MetalProgram(device, "test", MetalCompiler(device).compile(f""" #include #include // Available from Metal version 2.3 released with OS X 11.0+ using namespace metal; kernel void test(device float *a, device const float *data1, device const float *data2, uint3 gid [[threadgroup_position_in_grid]], uint3 lid [[thread_position_in_threadgroup]]) {{ a += gid.x * 32 * {N} + (gid.y * {LID} + lid.y) * 32; data1 += gid.x * 32 * {N}; data2 += (gid.y * {LID} + lid.y) * 32; simdgroup_float8x8 acc[4][4]; for (uint i = 0; i < 4; i++) {{ for (uint j = 0; j < 4; j++) {{ acc[i][j] = simdgroup_float8x8(0); }} }} simdgroup_float8x8 A[4]; simdgroup_float8x8 B[4]; for (uint k = 0; k < {N}; k+=8) {{ threadgroup_barrier(mem_flags::mem_threadgroup); simdgroup_load(A[0], data1+k+{0*N}, {N}, ulong2(0, 0)); simdgroup_load(A[1], data1+k+{8*N}, {N}, ulong2(0, 0)); simdgroup_load(A[2], data1+k+{16*N}, {N}, ulong2(0, 0)); simdgroup_load(A[3], data1+k+{24*N}, {N}, ulong2(0, 0)); simdgroup_load(B[0], data2+0+k*{N}, {N}, ulong2(0, 0)); simdgroup_load(B[1], data2+8+k*{N}, {N}, ulong2(0, 0)); simdgroup_load(B[2], data2+16+k*{N}, {N}, ulong2(0, 0)); simdgroup_load(B[3], data2+24+k*{N}, {N}, ulong2(0, 0)); simdgroup_multiply_accumulate(acc[0][0], A[0], B[0], acc[0][0]); simdgroup_multiply_accumulate(acc[0][1], A[1], B[0], acc[0][1]); simdgroup_multiply_accumulate(acc[0][2], A[2], B[0], acc[0][2]); simdgroup_multiply_accumulate(acc[0][3], A[3], B[0], acc[0][3]); simdgroup_multiply_accumulate(acc[1][0], A[0], B[1], acc[1][0]); simdgroup_multiply_accumulate(acc[1][1], A[1], B[1], acc[1][1]); simdgroup_multiply_accumulate(acc[1][2], A[2], B[1], acc[1][2]); simdgroup_multiply_accumulate(acc[1][3], A[3], B[1], acc[1][3]); simdgroup_multiply_accumulate(acc[2][0], A[0], B[2], acc[2][0]); simdgroup_multiply_accumulate(acc[2][1], A[1], B[2], acc[2][1]); simdgroup_multiply_accumulate(acc[2][2], A[2], B[2], acc[2][2]); simdgroup_multiply_accumulate(acc[2][3], A[3], B[2], acc[2][3]); simdgroup_multiply_accumulate(acc[3][0], A[0], B[3], acc[3][0]); simdgroup_multiply_accumulate(acc[3][1], A[1], B[3], acc[3][1]); simdgroup_multiply_accumulate(acc[3][2], A[2], B[3], acc[3][2]); simdgroup_multiply_accumulate(acc[3][3], A[3], B[3], acc[3][3]); }} simdgroup_store(acc[0][0], a+{0+0*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[1][0], a+{8+0*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[2][0], a+{16+0*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[3][0], a+{24+0*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[0][1], a+{0+8*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[1][1], a+{8+8*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[2][1], a+{16+8*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[3][1], a+{24+8*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[0][2], a+{0+16*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[1][2], a+{8+16*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[2][2], a+{16+16*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[3][2], a+{24+16*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[0][3], a+{0+24*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[1][3], a+{8+24*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[2][3], a+{16+24*N}, {N}, ulong2(0, 0)); simdgroup_store(acc[3][3], a+{24+24*N}, {N}, ulong2(0, 0)); }}""")) def timeit(fxn): st = time.perf_counter() et = fxn() # NOTE: et doesn't contain the launch overhead return time.perf_counter() - st tm = min([timeit(lambda: prog(a, b, c, global_size=[N//(8*4), N//(8*4*LID), 1], local_size=[32, LID, 1], wait=True)) for _ in range(20)]) comp = nb@nc metalalloc._copyout(flat_mv(na.data), a) if N <= 32: print(na) print(comp) print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul, {BW*1e-9/tm:.2f} GB/s") np.testing.assert_allclose(na, comp, atol=1e-3) import torch, torch.mps b = torch.from_numpy(nb).to('mps') c = torch.from_numpy(nc).to('mps') def torch_prog(b, c): st = time.perf_counter() a = b@c torch.mps.synchronize() return time.perf_counter() - st tm = min([torch_prog(b, c) for _ in range(20)]) print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in torch") from tinygrad.tensor import Tensor from tinygrad.engine.jit import TinyJit b = Tensor(nb) c = Tensor(nc) # TODO: slowness without the JIT I suspect comes from a lack of a caching allocator @TinyJit def tiny_jit(b, c): return (b@c).realize() def tiny_prog(b, c): st = time.perf_counter() a = tiny_jit(b, c) Device["METAL"].synchronize() return time.perf_counter() - st tm = min([tiny_prog(b, c) for _ in range(20)]) print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in tinygrad")