import numpy as np from tinygrad.helpers import getenv from tinygrad.dtype import _to_np_dtype from tinygrad import dtypes, Tensor dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None if getenv("INT"): dtype_in, acc_dtype = dtypes.int8, dtypes.int32 if getenv("UINT"): dtype_in, acc_dtype = dtypes.uint8, dtypes.int32 N = getenv("N", 4096) M = getenv("M", N) K = getenv("K", N) CNT = getenv("CNT", 10) ATOL = getenv("ATOL", 1e-4) RTOL = getenv("RTOL", 3e-2) INT_LOW = getenv("INT_LOW", 0) INT_HIGH = getenv("INT_HIGH", 10) if __name__ == "__main__": def init_matrix(rows, cols): rng = np.random.default_rng() # NOTE: numpy does not support bfloat16 if (np_dtype := _to_np_dtype(dtype_in)) is None: np_dtype = np.float32 if dtype_in in dtypes.ints: return Tensor(rng.integers(INT_LOW, INT_HIGH, (rows, cols), dtype=np_dtype)).realize() return Tensor(rng.random((rows, cols), dtype=np.float32).astype(np_dtype)).cast(dtype_in).realize() a, b = init_matrix(M, K), init_matrix(K, N) for i in range(CNT): if i > 0 and getenv("RAND", 0) != 0: a, b = init_matrix(M, K), init_matrix(K, N) c = a.matmul(b, dtype=acc_dtype).realize() ref = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32) res = c.numpy() try: np.testing.assert_allclose(res, ref, rtol=RTOL, atol=ATOL) except AssertionError as e: if getenv("DEBUG_VALUES", 0) > 0: mismatch = np.where(~np.isclose(res, ref, rtol=RTOL, atol=ATOL)) print("Mismatch indices:", mismatch) print("Result :", res[mismatch]) print("Ground truth :", ref[mismatch]) raise e