# https://github.com/onnx/onnx/blob/main/onnx/onnx.proto3 import os, pathlib, struct from io import BufferedReader from typing import Tuple, Union from types import SimpleNamespace from tinygrad.nn.state import TensorIO from tinygrad.tensor import Tensor, dtypes # Protobuf Wire Types WIRETYPE_VARINT = 0; WIRETYPE_FIXED64 = 1; WIRETYPE_LENGTH_DELIMITED = 2; WIRETYPE_START_GROUP = 3; WIRETYPE_END_GROUP = 4; WIRETYPE_FIXED32 = 5 # noqa: E702 # TensorProto.DataType class TensorDataType: UNDEFINED = 0; FLOAT = 1; UINT8 = 2; INT8 = 3; UINT16 = 4; INT16 = 5; INT32 = 6; INT64 = 7 # noqa: E702 STRING = 8; BOOL = 9; FLOAT16 = 10; DOUBLE = 11; UINT32 = 12; UINT64 = 13; COMPLEX64 = 14; COMPLEX128 = 15; BFLOAT16 = 16 # noqa: E702 # AttributeProto.AttributeType class AttributeType: UNDEFINED = 0; FLOAT = 1; INT = 2; STRING = 3; TENSOR = 4; GRAPH = 5; SPARSE_TENSOR = 11; TYPE_PROTO = 13; FLOATS = 6; INTS = 7 # noqa: E702 STRINGS = 8; TENSORS = 9; GRAPHS = 10; SPARSE_TENSORS = 12; TYPE_PROTOS = 14 # noqa: E702 class PBType: FLOAT = 1; INT = 2; STRING = 3; FLOATS = 4; INTS = 5; STRINGS = 6; BYTES = 7; SUB = 8 # noqa: E702 PB_INFOS = { "OperatorSetIdProto": {1: ("domain", PBType.STRING), 2: ("version", PBType.INT)}, "StringStringEntryProto": {1: ("key", PBType.STRING), 2: ("value", PBType.STRING)}, "TensorProto": {1: ("dims", PBType.INT, True), 2: ("data_type", PBType.INT), 4: ("float_data", PBType.FLOATS), 13: ("external_data", PBType.SUB, True, "StringStringEntryProto"), 14: ("data_location", PBType.INT), 5: ("int32_data", PBType.INTS), 7: ("int64_data", PBType.INTS), 8: ("name", PBType.STRING), 9: ("raw_data", PBType.BYTES)}, "TensorShapeProtoDimension": {1: ("dim_value", PBType.INT), 2: ("dim_param", PBType.STRING)}, "TensorShapeProto": {1: ("dim", PBType.SUB, True, "TensorShapeProtoDimension")}, "ModelProto": {1: ("ir_version", PBType.INT), 5: ("model_version", PBType.INT), 2: ("producer_name", PBType.STRING), 3: ("producer_version", PBType.STRING), 4: ("domain", PBType.STRING), 6: ("doc_string", PBType.STRING), 7: ("graph", PBType.SUB, False, ("GraphProto", lambda: {"node": [], "initializer": [], "input": [], "output": [], "value_info": []})), 8: ("opset_import",PBType.SUB, True, "OperatorSetIdProto")}, "GraphProto": {2: ("name", PBType.STRING), 10: ("doc_string", PBType.STRING), 1: ("node", PBType.SUB, True, ("NodeProto", lambda: {"input": [], "output": [], "attribute": [], "domain": None})), 5: ("initializer", PBType.SUB, True, ("TensorProto", lambda: {"dims": [], "float_data": [], "int32_data": [], "string_data": [], "int64_data": [], "double_data": [], "uint64_data": []})), 11: ("input", PBType.SUB, True, "ValueInfoProto"), 12: ("output", PBType.SUB, True, "ValueInfoProto")}, "NodeProto": { 1: ("input", PBType.STRING, True), 2: ("output", PBType.STRING, True), 3: ("name", PBType.STRING), 4: ("op_type", PBType.STRING), 6: ("doc_string", PBType.STRING), 7: ("domain", PBType.STRING), 5: ("attribute", PBType.SUB, True, ("AttributeProto", lambda: {"floats": [], "ints": [], "strings": []}))}, "AttributeProto": {1: ("name", PBType.STRING), 20: ("type", PBType.INT), 3: ("i", PBType.INT), 8: ("ints", PBType.INT, True), 2: ("f", PBType.FLOAT), 7: ("floats", PBType.FLOAT, True), 4: ("s", PBType.BYTES), 9: ("strings", PBType.BYTES, True), 5:("t", PBType.SUB, False, ("TensorProto", lambda: {"dims": [], "float_data": [], "int32_data": [], "string_data": [], "int64_data": [], "double_data": [], "uint64_data": []}))}, "ValueInfoProto": {1: ("name", PBType.STRING), 2: ("type", PBType.SUB, False, "TypeProto"), 3: ("doc_string", PBType.STRING)}, "TypeProto": {1: ("tensor_type", PBType.SUB, False, "TypeProtoTensor"), 4: ("sequence_type", PBType.SUB, False, "TypeProtoSequence"), 9: ("optional_type", PBType.SUB, False, "TypeProtoOptional"), 6: ("denotation", PBType.STRING)}, "TypeProtoSequence": {1: ("elem_type", PBType.SUB, False, "TypeProto")}, "TypeProtoOptional": {1: ("elem_type", PBType.SUB, False, "TypeProto")}, "TypeProtoTensor": {1: ("elem_type", PBType.INT), 2: ("shape", PBType.SUB, False, ("TensorShapeProto", lambda: {"dim": []}))}, } def onnx_load(fn: Union[Tensor, str, pathlib.Path], load_external_data: bool=True): parser = OnnxParser(fn, load_external_data) onnx_model = parser.parse() model = dict_to_namespace(onnx_model) return model def gen_result(obj: dict, key_name, val, repeated: bool): if repeated: obj.setdefault(key_name, []).append(val) else: obj[key_name] = val def dict_to_namespace(d): if isinstance(d, dict): return SimpleNamespace(**{k: dict_to_namespace(v) for k, v in d.items()}) elif isinstance(d, list): return [dict_to_namespace(i) for i in d] return d class OnnxParser: def __init__(self, inp: Union[Tensor, str, pathlib.Path], load_external_data: bool=True): self.file_path: Union[pathlib.Path, None] = None self.load_external_data = load_external_data if not isinstance(inp, Tensor): self.file_path = pathlib.Path(inp) self.tensor = Tensor(self.file_path) else: self.tensor = inp self.attr_func_dict = { PBType.BYTES: self._handle_bytes, PBType.SUB: self._handle_sub_message, PBType.FLOATS: self._handle_packed_floats, PBType.INT: self._handle_int64, PBType.INTS: self._handle_packed_int64s, PBType.STRING: self._handle_string, PBType.FLOAT: self._handle_float} self.registered_handles = {} for pb_name in PB_INFOS: res = {} for fid, config in PB_INFOS[pb_name].items(): parser_fn, repeated = None, False if len(config) == 2: name, attr = config elif len(config) == 3: name, attr, repeated = config elif len(config) == 4: name, attr, repeated, parser_fn = config handler_fn = self.attr_func_dict[attr] def _wrapper_handler(obj, reader, wt, h=handler_fn, n=name, p=parser_fn, r=repeated): return h(obj, n, reader, wt, parser_func=p, repeated=r) _wrapper_handler._debug_info = f"{fid}, {name} => {handler_fn}" res[fid] = _wrapper_handler self.registered_handles[pb_name] = res def parse(self): reader = BufferedReader(TensorIO(self.tensor)) return self._parse_message(reader, "ModelProto", lambda: {"opset_import": [], "domain": None, "graph": None}) def decode_varint(self, reader: BufferedReader) -> int: result = 0 shift = 0 while True: data = reader.read(1) if data == b"": raise EOFError("decode_varint EOF") result |= (data[0] & 0x7F) << shift if not (data[0] & 0x80): return result shift += 7 if shift >= 70: raise ValueError("Varint too long") def skip_field_value(self, reader: BufferedReader, wire_type): if wire_type == WIRETYPE_VARINT: self.decode_varint(reader) elif wire_type == WIRETYPE_FIXED64: reader.seek(8, os.SEEK_CUR) elif wire_type == WIRETYPE_FIXED32: reader.seek(4, os.SEEK_CUR) elif wire_type == WIRETYPE_LENGTH_DELIMITED: reader.seek(self.decode_varint(reader), os.SEEK_CUR) else: raise ValueError(f"Unknown wire type: {wire_type}") def _parse_message(self, reader, message_field_handlers_name, initial_obj_factory=lambda: {}): message_field_handlers = self.registered_handles[message_field_handlers_name] obj = initial_obj_factory() while True: try: tag_val = self.decode_varint(reader) field_number = tag_val >> 3 wire_type = tag_val & 0x07 if handler := message_field_handlers.get(field_number): handler(obj, reader, wire_type) else: self.skip_field_value(reader, wire_type) except EOFError: break if message_field_handlers_name == "TensorProto" and self.load_external_data and obj.get("data_location", 0) == 1: self._parse_external_data(obj) return obj def _handle_delimited(self, reader:BufferedReader, use_tensor=False) -> Tuple[bytes, Tensor]: str_len = self.decode_varint(reader) if not use_tensor: return reader.read(str_len) res = reader.raw._tensor[reader.tell():(reader.tell()+str_len)] reader.seek(str_len, os.SEEK_CUR) return res def _handle_string(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False): if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for string field '{key_name}'") value = self._handle_delimited(reader) gen_result(obj, key_name, value.decode("utf-8"), repeated) def _handle_bytes(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False): if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for bytes field '{key_name}'") value = self._handle_delimited(reader, use_tensor=True) gen_result(obj, key_name, value, repeated) def _handle_int64(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False): if wire_type != WIRETYPE_VARINT: raise ValueError(f"Expected varint for int64 field '{key_name}'") val = self.decode_varint(reader) gen_result(obj, key_name, val - 2**64 if val & (1 << 63) else val, repeated) def _handle_float(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False): if wire_type != WIRETYPE_FIXED32: raise ValueError(f"Expected fixed32 for float field '{key_name}'") val, = struct.unpack("