# code from https://x.com/awnihannun/status/1832511021602500796 from huggingface_hub import snapshot_download import mlx.core as mx import mlx.nn as nn import time class Block(nn.Module): def __init__(self, in_dims, dims, stride=1): super().__init__() self.conv1 = nn.Conv2d( in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn1 = nn.BatchNorm(dims) self.conv2 = nn.Conv2d( dims, dims, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.BatchNorm(dims) self.downsample = [] if stride != 1: self.downsample = [ nn.Conv2d(in_dims, dims, kernel_size=1, stride=stride, bias=False), nn.BatchNorm(dims) ] def __call__(self, x): out = nn.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) for l in self.downsample: x = l(x) out += x out = nn.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 64, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 128, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 256, 512, num_blocks[3], stride=2) self.fc = nn.Linear(512, num_classes) def _make_layer(self, block, in_dims, dims, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(in_dims, dims, stride)) in_dims = dims return layers def __call__(self, x): x = nn.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) for l in self.layer1 + self.layer2 + self.layer3 + self.layer4: x = l(x) x = mx.mean(x, axis=[1, 2]) x = self.fc(x) return x def load(): model = ResNet(Block, [2, 2, 2, 2], num_classes=1000) file = "model.safetensors" model_path = snapshot_download( repo_id="awni/resnet18-mlx", allow_patterns=[file], ) model.load_weights(model_path + "/" + file) model.eval() mx.eval(model) return model if __name__ == "__main__": resnet18 = load() @mx.compile def forward(im): return resnet18(im) batch_sizes = [1, 2, 4, 8, 16, 32, 64] #its = 200 #batch_sizes = [64] its = 20 print(f"Batch Size | Images-per-second | Milliseconds-per-image") print(f"---- | ---- | ---- ") for N in batch_sizes: image = mx.random.uniform(shape=(N, 288, 288, 3)) # Warmup for _ in range(5): output = forward(image) mx.eval(output) tic = time.time() for _ in range(its): output = forward(image) mx.async_eval(output) mx.eval(output) toc = time.time() ims_per_sec = N * its / (toc - tic) ms_per_im = 1e3 / ims_per_sec print(f"{N} | {ims_per_sec:.3f} | {ms_per_im:.3f}")