import numpy as np from examples.yolov8 import YOLOv8, get_variant_multiples, preprocess, postprocess, label_predictions import unittest import io, cv2 import onnxruntime as ort import ultralytics from tinygrad.nn.state import safe_load, load_state_dict from tinygrad.helpers import fetch class TestYOLOv8(unittest.TestCase): def test_all_load_weights(self): for variant in ['n', 's', 'm', 'l', 'x']: depth, width, ratio = get_variant_multiples(variant) TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80) state_dict = safe_load(fetch(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{variant}.safetensors')) load_state_dict(TinyYolov8, state_dict) print(f'successfully loaded weights for yolov{variant}') def test_predictions(self): test_image_urls = ['https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg', 'https://www.aljazeera.com/wp-content/uploads/2022/10/2022-04-28T192650Z_1186456067_UP1EI4S1I0P14_RTRMADP_3_SOCCER-ENGLAND-MUN-CHE-REPORT.jpg'] variant = 'n' depth, width, ratio = get_variant_multiples(variant) TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80) state_dict = safe_load(fetch(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{variant}.safetensors')) load_state_dict(TinyYolov8, state_dict) for i in range(len(test_image_urls)): img = cv2.imdecode(np.frombuffer(fetch(test_image_urls[i]).read_bytes(), np.uint8), 1) test_image = preprocess([img]) predictions = TinyYolov8(test_image) post_predictions = postprocess(preds=predictions, img=test_image, orig_imgs=[img]) labels = label_predictions(post_predictions) assert labels == {5: 1, 0: 4, 11: 1} if i == 0 else labels == {0: 13, 29: 1, 32: 1} def test_forward_pass_torch_onnx(self): variant = 'n' weights_location = fetch(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{variant}.safetensors') weights_location_pt = fetch(f'https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8{variant}.pt', name=f"yolov8{variant}.pt") # it needs the pt extension # noqa: E501 weights_location_onnx = weights_location_pt.parent / f"yolov8{variant}.onnx" # the ultralytics export prints a lot of unneccesary things if not weights_location_onnx.is_file(): model = ultralytics.YOLO(model=weights_location_pt, task='Detect') model.export(format="onnx",imgsz=[640, 480]) depth, width, ratio = get_variant_multiples(variant) TinyYolov8 = YOLOv8(w=width, r=ratio, d=depth, num_classes=80) state_dict = safe_load(weights_location) load_state_dict(TinyYolov8, state_dict) image_location = [np.frombuffer(io.BytesIO(fetch('https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg').read_bytes()).read(), np.uint8)] # noqa: E501 orig_image = [cv2.imdecode(image_location[0], 1)] input_image = preprocess(orig_image) onnx_session = ort.InferenceSession(weights_location_onnx) onnx_input_name = onnx_session.get_inputs()[0].name onnx_output_name = onnx_session.get_outputs()[0].name onnx_output = onnx_session.run([onnx_output_name], {onnx_input_name: input_image.numpy()}) tiny_output = TinyYolov8(input_image) # currently rtol is 0.025 because there is a 1-2% difference in our predictions # because of the zero padding in SPPF module (line 280) maxpooling layers rather than the -infinity in torch. # This difference does not make a difference "visually". np.testing.assert_allclose(onnx_output[0], tiny_output.numpy(), atol=5e-4, rtol=0.025) if __name__ == '__main__': unittest.main()