import unittest import numpy as np from tinygrad import Tensor, Variable class TestTensorVariable(unittest.TestCase): def test_add_tvar(self): vv = Variable("a", 0, 10).bind(1) ret = (Tensor(vv) + 3).item() assert ret == 4 def test_inner_tvar_node(self): vv = Variable("w", 0, 10).bind(2) ret = Tensor.from_uop(vv * 4).item() assert ret == 8 def test_inner_tvar_mul(self): vv = Variable("w", 0, 10).bind(2) assert (Tensor(3) * vv).item() == 6 def test_inner_tvar_mul_node(self): vv = Variable("w", 0, 10).bind(2) assert (Tensor(3) * (vv * 4)).item() == 24 def test_symbolic_mean(self): vv = Variable("a", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(2, vv) ret = t.mean().item() assert ret == 1 def test_symbolic_mean_2d(self): vv = Variable("a", 1, 10).bind(2) vv2 = Variable("b", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv) ret = t.mean().item() assert ret == 1 def test_symbolic_mean_2d_axis_1(self): vv = Variable("a", 1, 10).bind(2) vv2 = Variable("b", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv) ret = t.mean(axis=1).reshape(2, 1).numpy() assert np.all(ret == 1) def test_symbolic_mean_2d_add(self): add_term = Variable("c", 0, 10).bind(1) vv = Variable("a", 1, 10).bind(1) vv2 = Variable("b", 1, 10).bind(1) t = Tensor.ones(2, 2).contiguous().reshape(vv2+add_term, vv+add_term) ret = t.mean().item() assert ret == 1 def test_symbolic_var(self): vv = Variable("a", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous().reshape(2, vv) ret = t.var().item() assert ret == 0 def test_symbolic_pad(self): vv = Variable("a", 1, 10).bind(2) t = Tensor.ones(2, 2).contiguous() t = t.pad([vv, vv, vv, vv]).mean() ones = 4 zeros = 6+6+4+4+6+6 self.assertAlmostEqual(t.item(), ones/(ones+zeros)) def test_symbolic_arange(self): vv = Variable("a", 1, 10) ret = Tensor.arange(0, vv.bind(4)) self.assertListEqual(ret.reshape(4).tolist(), [0,1,2,3]) def test_symbolic_arange_sym_start(self): vv = Variable("a", 1, 6) ret = Tensor.arange(vv.bind(4), 7) self.assertListEqual(ret.reshape(3).tolist(), [4,5,6]) # TODO: add vmin/vmax pattern for symbolic denominator @unittest.expectedFailure def test_symbolic_arange_sym_step(self): vv = Variable("step", 1, 3) ret = Tensor.arange(0, 10, vv.bind(2)) self.assertListEqual(ret.reshape(5).tolist(), [0,2,4,6,8]) def test_symbolic_arange_two_vars(self): begin = Variable("b", 1, 5) end = Variable("e", 6, 10) ret = Tensor.arange(begin.bind(4), end.bind(7)) self.assertListEqual(ret.reshape(3).tolist(), [4,5,6]) if __name__ == '__main__': unittest.main()