import os, unittest, ctypes from tinygrad import dtypes, Tensor, fetch, Device import numpy as np from tinygrad.nn.state import ggml_data_to_tensor, gguf_load from tinygrad.device import is_dtype_supported try: import ggml except ModuleNotFoundError: raise unittest.SkipTest("ggml not installed, skipping gguf test") ggml_test_block_count = 4 ggml_type_to_np_dtype = { ggml.GGML_TYPE_F16: np.float16, ggml.GGML_TYPE_F32:np.float32, ggml.GGML_TYPE_F64:np.float64, ggml.GGML_TYPE_I8:np.int8, ggml.GGML_TYPE_I16: np.int16, ggml.GGML_TYPE_I32: np.int32, ggml.GGML_TYPE_I64: np.int64, } np_dtype_to_ctype = { np.float16: ctypes.c_uint16 } gguf_val_getters = [ ggml.gguf_get_val_u8, ggml.gguf_get_val_i8, ggml.gguf_get_val_u16, ggml.gguf_get_val_i16, ggml.gguf_get_val_u32, ggml.gguf_get_val_i32, ggml.gguf_get_val_f32, ggml.gguf_get_val_bool, lambda *args: ggml.gguf_get_val_str(*args).decode("utf-8"), None, ggml.gguf_get_val_u64, ggml.gguf_get_val_i64, ggml.gguf_get_val_f64, ] def ggml_tensor_to_numpy(tensor: ggml.ggml_tensor_p): ctx: ggml.ggml_context_p | None = None ggml_type, n_dims, n_els = tensor.contents.type, ggml.ggml_n_dims(tensor), ggml.ggml_nelements(tensor) shape = tuple(reversed(tensor.contents.ne[:n_dims])) if ggml_type not in ggml_type_to_np_dtype: ctx = ggml.ggml_init(ggml.ggml_init_params(mem_size=n_els * 5 + 500, mem_buffer=None)) ntensor = ggml.ggml_new_tensor(ctx, ggml.GGML_TYPE_F32, n_dims, tensor.contents.ne) type_traits = ggml.ggml_internal_get_type_traits(ggml_type) type_traits.to_float(ggml.ggml_get_data(tensor), ggml.ggml_get_data_f32(ntensor), n_els) tensor, ggml_type = ntensor, ggml.GGML_TYPE_F32 np_type = ggml_type_to_np_dtype[ggml_type] ctypes_type = np_dtype_to_ctype.get(np_type, None) or np.ctypeslib.as_ctypes_type(np_type) data = ggml.ggml_get_data(tensor) if data is None: raise ValueError("tensor data is None") arr = (ctypes_type * ggml.ggml_nelements(tensor)).from_address(data) strides = tuple(reversed(tensor.contents.nb[:n_dims])) output = np.ctypeslib.as_array(arr) output.dtype = np_type return np.lib.stride_tricks.as_strided(output, shape=shape, strides=strides), ctx @unittest.skipIf(any(not is_dtype_supported(t) for t in [ dtypes.uint8, dtypes.half ]), "Backend must support uint8 and half") class TestGGUF(unittest.TestCase): def setUp(self) -> None: params = ggml.ggml_init_params(mem_size=0, mem_buffer=None, no_alloc=False) self.ctx = ctypes.cast(ggml.ggml_init(params), ctypes.POINTER(ctypes.c_void_p)) def tearDown(self) -> None: ggml.ggml_free(self.ctx) def test_load_tinyllama_q8_0(self): self._test_gguf_load("https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories15M-q8_0.gguf?download=true") def test_load_tinyllama_q4_0(self): self._test_gguf_load("https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories15M-q4_0.gguf?download=true") def test_load_gpt2_q4_1(self): self._test_gguf_load("https://huggingface.co/PrunaAI/gpt2-GGUF-smashed/resolve/main/gpt2.Q4_1.gguf?download=true") def test_load_sample_q6_k(self): self._test_gguf_load("https://huggingface.co/Isotr0py/test-gguf-sample/resolve/main/Quant_Q6_K_1024.gguf?download=true") def test_dequantization_q4_0(self): self._test_dequantization(ggml.GGML_TYPE_Q4_0) def test_dequantization_q4_1(self): self._test_dequantization(ggml.GGML_TYPE_Q4_1) def test_dequantization_q8_0(self): self._test_dequantization(ggml.GGML_TYPE_Q8_0) def test_dequantization_q6_k(self): self._test_dequantization(ggml.GGML_TYPE_Q6_K) def test_expected_failure_unknown_type(self): with self.assertRaises(ValueError): ggml_data_to_tensor(Tensor.empty(512, dtype=dtypes.uint8), 256, 1337) def _test_dequantization(self, ttype: int): type_traits = ggml.ggml_internal_get_type_traits(ttype) n_el, n_bytes = ggml_test_block_count * type_traits.blck_size, ggml_test_block_count * type_traits.type_size data_in = (np.random.random((n_el,)).astype(np.float32) * 100 - 50).ctypes.data_as(ctypes.POINTER(ctypes.c_float)) c_q_data, c_dq_data = (ctypes.c_char * n_bytes)(0), (ctypes.c_float * n_el)(0) type_traits.from_float(data_in, c_q_data, n_el) type_traits.to_float(c_q_data, c_dq_data, n_el) q_tensor = Tensor(np.frombuffer(c_q_data, dtype=np.uint8, count=n_bytes)) dq_tensor = ggml_data_to_tensor(q_tensor, n_el, ttype).reshape(n_el) np.testing.assert_equal(dq_tensor.numpy(), np.frombuffer(c_dq_data, dtype=np.float32)) def _test_gguf_load(self, url: str): fp = fetch(url) model_size = os.stat(fp).st_size gguf_tensor = Tensor.empty(model_size, dtype=dtypes.uint8, device=f"disk:{fp}").to(Device.DEFAULT) kv_data, tensors = gguf_load(gguf_tensor) gguf_params = ggml.gguf_init_params(ctx=self.ctx, no_alloc=False) gguf_ctx = ggml.gguf_init_from_file(str(fp).encode("utf8"), gguf_params) param_ctx = gguf_params.ctx.contents.value for ggml_tensor_idx in range(ggml.gguf_get_n_tensors(gguf_ctx)): tensor_name = ggml.gguf_get_tensor_name(gguf_ctx, ggml_tensor_idx) ggml_tensor = ggml.ggml_get_tensor(param_ctx, tensor_name) ggml_tensor_numpy, temp_ctx = ggml_tensor_to_numpy(ggml_tensor) tensor = tensors.get(tensor_name.decode("utf-8")) np.testing.assert_equal(tensor.numpy(), ggml_tensor_numpy) if temp_ctx is not None: ggml.ggml_free(temp_ctx) for gguf_key_id in range(ggml.gguf_get_n_kv(gguf_ctx)): v = kv_data[ggml.gguf_get_key(gguf_ctx, gguf_key_id).decode("utf-8")] v_type = ggml.gguf_get_kv_type(gguf_ctx, gguf_key_id) if (get_fn := gguf_val_getters[v_type]) is not None: self.assertEqual(get_fn(gguf_ctx, gguf_key_id), v) ggml.gguf_free(gguf_ctx) if __name__ == '__main__': unittest.main()