from typing import Callable import unittest, math import torch from tinygrad import Tensor from tinygrad.dtype import dtypes from tinygrad.ops import UOp from tinygrad.gradient import compute_gradient class TestGradient(unittest.TestCase): def _cmp_nan_okay(self, x, y): if math.isnan(x) and math.isnan(y): return self.assertAlmostEqual(x, y, places=5) def _test_one_input_function(self, f:Callable, jf:Callable|None=None): if jf is None: jf = f x = UOp.variable('x', -math.inf, math.inf, dtype=dtypes.float) gx = compute_gradient(f(x), UOp.const(dtypes.float, 1.0), set([x]))[x] for val in [-5., -2.0, 0.0, 2.0, 5.]: tg_out = gx.substitute({x: x.const_like(val)}).ssimplify() tx = torch.tensor([val], dtype=torch.float, requires_grad=True) torch_out = torch.autograd.grad(jf(tx), tx)[0].item() self._cmp_nan_okay(tg_out, torch_out) def _test_two_input_function(self, f:Callable, jf:Callable|None=None): if jf is None: jf = f x = UOp.variable('x', -math.inf, math.inf, dtype=dtypes.float) y = UOp.variable('y', -math.inf, math.inf, dtype=dtypes.float) grads = compute_gradient(f(x, y), UOp.const(dtypes.float, 1.0), set([x, y])) gx, gy = grads[x], grads[y] for valx in [-5., -2.0, 0.0, 2.0, 5.]: for valy in [-5., -2.0, 0.0, 2.0, 5.]: # Substitute the values into the gradient expressions substitutions = {x: x.const_like(valx), y: y.const_like(valy)} tg_out_x = gx.substitute(substitutions).ssimplify() tg_out_y = gy.substitute(substitutions).ssimplify() tx = torch.tensor([valx], dtype=torch.float, requires_grad=True) ty = torch.tensor([valy], dtype=torch.float, requires_grad=True) torch_grad = torch.autograd.grad(jf(tx, ty), [tx, ty]) torch_out_x, torch_out_y = [x.item() for x in torch_grad] self._cmp_nan_okay(tg_out_x, torch_out_x) self._cmp_nan_okay(tg_out_y, torch_out_y) # unary ops unit def test_recip(self): self._test_one_input_function(lambda x: 1.0/x) def test_sin(self): self._test_one_input_function(lambda x: x.sin()) def test_sqrt(self): self._test_one_input_function(lambda x: x.sqrt()) def test_log2(self): self._test_one_input_function(lambda x: x.log2()) def test_exp2(self): self._test_one_input_function(lambda x: x.exp2()) # binary ops unit def test_add(self): self._test_two_input_function(lambda x,y: x+y) def test_mul(self): self._test_two_input_function(lambda x,y: x*y) # chain rule def test_chain(self): self._test_one_input_function(lambda x: x.sin().sqrt()) def test_chain_binop(self): self._test_two_input_function(lambda x,y: (x*y)+x*y) def test_big_add_sin(self): self._test_two_input_function(lambda x,y: x.sin()+3.0/y) def test_big_chain(self): self._test_two_input_function(lambda x,y: (1.0/x*y)+x*y) def test_where(self): self._test_two_input_function(lambda x,y: (x