from __future__ import annotations import functools, operator, itertools from dataclasses import dataclass from typing import Optional, cast, Sequence from tinygrad.dtype import dtypes from tinygrad.ops import resolve, UOp, Variable, sint, sym_infer, smax, smin, sint_to_uop from tinygrad.helpers import prod, all_int, argsort, flatten, ceildiv @functools.lru_cache(maxsize=None) def canonicalize_strides(shape:tuple[sint, ...], strides:tuple[sint, ...]) -> tuple[sint, ...]: return tuple(0 if s == 1 else st for s, st in zip(shape, strides)) @functools.lru_cache(maxsize=None) def strides_for_shape(shape:tuple[sint, ...]) -> tuple[sint, ...]: if not shape: return () strides = tuple(itertools.accumulate(reversed(shape[1:]), operator.mul, initial=1))[::-1] return canonicalize_strides(shape, strides) @functools.lru_cache(maxsize=None) def merge_dims(shape:tuple[int, ...], strides:tuple[int, ...], mask:Optional[tuple[tuple[int, int], ...]]=None) -> tuple[tuple[int, int, int], ...]: # merge contiguous sub-parts or zero strided dims # any stride 0, masked from dim=1, or contiguous part is merged into next dim. # stride != 0 to stride == 0 starts a new merging block # ret = tuple[(merged_size, stride, merged size w/o zero stride), ...] if not shape: return () assert len(shape) == len(strides) and (mask is None or len(shape) == len(mask)) ret = [(shape[0], strides[0], shape[0] if strides[0] != 0 else 0)] # merge this dim to next dim if size is 1 merging = (mask[0][1] - mask[0][0] == 1) if mask is not None else shape[0] == 1 for i, (s, st) in enumerate(zip(shape[1:], strides[1:]), start=1): # always merge 1 if s == 1: continue last_s, last_st, last_pre_expand_s = ret[-1] # merge last dim with this dim if merging or strides matched if merging or last_st == s * st: ret[-1] = (last_s * s, st, (s if merging else last_pre_expand_s * s)) else: ret.append((s, st, s)) # merge this dim to next dim if size is 1 merging = (mask[i][1] - mask[i][0] == 1) if mask is not None else s == 1 return tuple(ret) @functools.lru_cache(maxsize=None) def _reshape_mask(_mask:Optional[tuple[tuple[sint, sint], ...]], old_shape:tuple[sint, ...], new_shape:tuple[sint, ...]) \ -> Optional[tuple[tuple[sint, sint], ...]]: """Returns the new mask if reshape is possible, and None if not possible.""" if _mask is None: return tuple((0, s) for s in new_shape) if not all_int(flatten(_mask)): return None new_mask: list[tuple[int, int]] = [] # _mask is all int here r_masks, r_shape, r_new_shape = reversed(cast(tuple[tuple[int, int], ...], _mask)), reversed(old_shape), reversed(new_shape) curr_stride, old_dim, new_dim, mask = 1, next(r_shape, 1), next(r_new_shape, 1), next(r_masks, (0,1)) while len(new_mask) < len(new_shape): (l, r), next_stride = mask, new_dim * curr_stride # need to split mask if old_dim == next_stride: # simply copy the mask and get next batch for merging new_mask.append((l // curr_stride, (r - 1) // curr_stride + 1)) curr_stride, old_dim, new_dim, mask = 1, next(r_shape, 1), next(r_new_shape, 1), next(r_masks, (0,1)) elif old_dim > next_stride: # mask can only be splitted if reshape doesn't cut across the mask. if old_dim % next_stride != 0: return None if (l % next_stride != 0 or r % next_stride != 0) and l // next_stride != (r - 1) // next_stride: return None new_mask.append((l % next_stride // curr_stride, (r - 1) % next_stride // curr_stride + 1)) curr_stride, new_dim = next_stride, next(r_new_shape, 1) # need to get mask for next dimension else: next_mask = next(r_masks, (0, 1)) # combine if the mask can unfold continuously if mask != (0, old_dim) and l != r and next_mask[1] - next_mask[0] != 1: return None mask, old_dim = (next_mask[0] * old_dim + l, (next_mask[1] - 1) * old_dim + r), old_dim * next(r_shape, 1) return tuple(reversed(new_mask)) def unravel(shape:tuple[sint, ...], offset:sint) -> list[sint]: # find the position of offset on each dimension based on shape # similar to unravel_index in numpy/torch acc, idxs = 1, [] for d in reversed(shape): idxs.append((offset//acc)%d) acc *= d return idxs[::-1] @dataclass(frozen=True) class View: shape:tuple[sint, ...] strides:tuple[sint, ...] offset:sint mask:Optional[tuple[tuple[sint, sint], ...]] contiguous:bool def to_indexed_uops(self:View, idxs:Optional[Sequence[UOp]]=None, vexpr:UOp=UOp.const(dtypes.bool, True)) -> tuple[UOp, UOp]: """(idx, valid)""" if idxs is None: idxs = [UOp.range(dtypes.int, 0, s, i) for i,s in enumerate(self.shape)] iexpr = sint_to_uop(self.offset) for idx,sh,st,m in zip(idxs, self.shape, self.strides, self.mask if self.mask is not None else itertools.repeat(None)): if resolve(sh != 1) and resolve(st != 0): iexpr = iexpr + idx*st if m is not None: if resolve(m[0] != 0): vexpr = vexpr * (idx >= m[0]) if resolve(m[1] != sh): vexpr = vexpr * (idx < m[1]) return iexpr, vexpr @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def size(self) -> int: ret = prod([x.vmax if isinstance(x, UOp) else x for x in self.shape]) assert isinstance(ret, int), f"{ret=} is not int" return ret @staticmethod @functools.lru_cache(maxsize=None) def create(shape:tuple[sint, ...], strides:Optional[tuple[sint, ...]]=None, offset:sint=0, mask:Optional[tuple[tuple[sint, sint], ...]]=None): if not all(s >= 0 for s in shape): raise ValueError(f"Trying to create View with negative dimension: {shape=}") strides = canonicalize_strides(shape, strides) if strides else strides_for_shape(shape) # canonicalize 0 in shape if 0 in shape: return View(shape, (0,) * len(shape), offset=0, mask=None, contiguous=True) # canonicalize no-op mask if mask is not None and all(m == (0,s) for m,s in zip(mask, shape)): mask = None # if any dimension has size >1, but is masked such that only one index in the dimension is unmasked # then its stride can also be set to 0, albeit with a corresponding adjustment required to the offset if mask and any(elim := [not resolve(b+1 < e) for b,e in mask]): if any(not resolve(b < e) for b,e in mask): strides, offset, mask = (0,) * len(shape), 0, ((0,0),) * len(shape) offset += sum((strides[i] * mask[i][0]) if e else 0 for i, e in enumerate(elim)) strides = tuple(0 if e else st for st,e in zip(strides, elim)) # simplify as we go if isinstance(offset, UOp): offset = cast(sint, offset.ssimplify()) shape = tuple(cast(sint, x.ssimplify()) if isinstance(x, UOp) else x for x in shape) # TODO: enabling stride simplification breaks symbolic jit """ strides = tuple(x.ssimplify() if isinstance(x, UOp) else x for x in strides) if mask: mask = tuple((s.ssimplify() if isinstance(s, UOp) else s, e.ssimplify() if isinstance(e, UOp) else e) for s,e in mask) """ contiguous = offset == 0 and mask is None and strides == strides_for_shape(shape) return View(shape, strides, offset, mask, contiguous) @functools.lru_cache(None) # pylint: disable=method-cache-max-size-none def vars(self) -> set[Variable]: flatten_mask = tuple(x for m in self.mask for x in m) if self.mask is not None else tuple() return functools.reduce(operator.or_, [x.vars() for x in self.shape+self.strides+(self.offset,)+flatten_mask if isinstance(x, UOp)], set()) @functools.lru_cache(None) # pylint: disable=method-cache-max-size-none def unbind(self) -> tuple[View, dict[Variable, int]]: var_unboundvar_val = [(v, v.unbind()) for v in self.vars()] unbound_vars = {v:uv for v,(uv,_) in var_unboundvar_val} def substitute(x:sint): return x if isinstance(x, int) else x.substitute(unbound_vars) new_shape = tuple(map(substitute, self.shape)) new_strides = tuple(map(substitute, self.strides)) new_offset = substitute(self.offset) new_mask = tuple((substitute(x[0]), substitute(x[1])) for x in self.mask) if self.mask is not None else None return View.create(new_shape, new_strides, new_offset, new_mask), dict(x[1] for x in var_unboundvar_val) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def __add__(self, vm1:View) -> Optional[View]: vm2 = self if vm2.contiguous: return vm1 if vm1.contiguous and vm1.shape == vm2.shape: return vm2 if vm1.contiguous and vm1.size() == vm2.size() and (ret := vm2.reshape(vm1.shape)) is not None: return ret if vm1.mask: if (new_vm1 := vm1.shrink(vm1.mask)) == vm1 or (merged := vm2 + new_vm1) is None: return None return merged.pad(tuple((b,s-e) for (b,e),s in zip(vm1.mask, vm1.shape))) if not all_int(vm1.shape): return None # Project vm1's offset and strides on to vm2. origin = unravel(vm2.shape, vm1.offset) terms: list[list[tuple[int, sint]]] = [[] for _ in vm2.shape] strides: list[sint] = [0] * len(vm1.shape) for d1, st in enumerate(vm1.strides): if st == 0: continue for d2, (o, s1) in enumerate(zip(origin, unravel(vm2.shape, vm1.offset + st))): if (s1 := s1 - o) == 0: continue terms[d2].append((d1, s1)) strides[d1] += s1 * vm2.strides[d2] # Merge dimensions in vm2 if required. # NB: Merging too many dimensions can make it difficult to project vm2's mask, hence only combining when required. idxs: list[UOp] = [UOp.variable(f"idx{i}", 0, s-1) for i,s in enumerate(vm1.shape)] merged_size, merged_term = 1, UOp.const(dtypes.int, 0) extents: list[tuple[sint, UOp]] = [] for term, s, o in zip(reversed(terms), reversed(vm2.shape), reversed(origin)): merged_term += (sum([idxs[d1] * s1 for d1, s1 in term]) + o) * merged_size merged_size *= s if resolve(merged_term < merged_size, False) and resolve(0 <= merged_term, False): extents.append((merged_size, merged_term)) merged_size, merged_term = 1, UOp.const(dtypes.int, 0) if resolve(merged_term != 0): return None if (vm2_shape := tuple(s for s,_ in reversed(extents))) != vm2.shape: if (reshaped_vm2 := vm2.reshape(vm2_shape)) is None: return None # NOTE: this != to prevent infinite loop if reshaped_vm2.shape != vm2.shape: return reshaped_vm2 + vm1 if vm2.mask: # Try to project vm2's mask on to vm1. newb, newe, bad = [0] * len(vm1.shape), list(vm1.shape), False for (b, e), o, term, (_, t) in zip(vm2.mask, origin, terms, reversed(extents)): if resolve(b <= t.vmin and t.vmax < e, False): continue if len(term) != 1: if not term and newe: newe[0] = 0 else: bad = True continue d1, s1 = term[0] newb[d1] = max(newb[d1], ceildiv(b - o if s1 > 0 else e - o - 1, s1)) newe[d1] = min(newe[d1], (b - o if s1 < 0 else e - o - 1) // s1 + 1) # If any of vm1 was masked off, try again with that mask in place. if any((b, e) != (0, s) for b, e, s in zip(newb, newe, vm1.shape)): return vm2 + View.create(vm1.shape, vm1.strides, vm1.offset, tuple(zip(newb, newe))) # Otherwise if vm2's mask was violated, then cannot merge. if bad: return None return View.create(vm1.shape, tuple(strides), sum(o * s for o, s in zip(origin, vm2.strides)) + vm2.offset) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def invert(self, out_shape:tuple[sint, ...]) -> Optional[View]: ret = View.create(self.shape) if self.mask: ret = ret.shrink(self.mask) ret = ret.flip(tuple(x < 0 for x in self.strides)).permute(argsort(tuple(-x if x > 0 else x for x in self.strides))) return ret if prod(ret.shape) == prod(out_shape) else None # don't support shrink, expand, or stride != (-1, 1) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def minify(self): min_shape = tuple(x[0] for x in merge_dims(self.shape, self.strides, self.mask)) return nv if (nv := self.reshape(min_shape)) else self def __unsafe_resize(self, arg: tuple[tuple[sint, sint], ...], mask=None) -> View: offset = sum([s * x[0] for s, x in zip(self.strides,arg)]) if self.mask: # move the old mask nmask = tuple([(smax(0, smin(mx-ax,ay-ax)), smax(0, smin(my-ax,ay-ax))) for (mx,my),(ax,ay) in zip(self.mask, arg)]) # merge the masks if we have two mask = tuple([(smax(mx1, mx2), smin(my1, my2)) for (mx1, my1), (mx2, my2) in zip(nmask, mask)]) if mask is not None else nmask return View.create(tuple([y-x for x,y in arg]), self.strides, self.offset+offset, mask) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def pad(self, arg: tuple[tuple[sint, sint], ...]) -> View: assert len(arg) == len(self.shape), f"invalid pad {arg} for {self.shape}" # NOTE: not checking for symbolic arg for b,e in arg: assert not all_int([b,e]) or b>=0 and e>=0, f"invalid pad {arg} for {self.shape}" if any(resolve(b!=0) or resolve(e!=0) for b, e in arg): zvarg = tuple([(-b,s+e) for s,(b,e) in zip(self.shape, arg)]) mask = tuple([(b,s+b) for s,(b,_) in zip(self.shape, arg)]) return self.__unsafe_resize(zvarg, mask=mask) return self @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def shrink(self, arg: tuple[tuple[sint, sint], ...]) -> View: assert len(arg) == len(self.shape), f"invalid shrink {arg} for {self.shape}" # NOTE: not checking for symbolic arg for s,(b,e) in zip(self.shape,arg): assert not all_int([s,b,e]) or (0<=b<=e<=s), f"invalid shrink {arg} for {self.shape}" return self.__unsafe_resize(arg) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def expand(self, new_shape: tuple[sint, ...]) -> View: if len(new_shape) != len(self.shape): raise ValueError(f"expand arg {new_shape=} must have same number of dimensions as shape {self.shape=}") # NOTE: does not check multiple of symbolic shape assert all(resolve(s == ns) or s == 1 for s,ns in zip(self.shape, new_shape)), f"can't expand {self.shape} into {new_shape}" if 0 in self.shape: return View.create(new_shape) # TODO: this resolve may not be needed, but it's hard because vars need to be sorted mask = tuple([(((0,0) if m != (0,1) else (0,ns)) if resolve(s != ns, False) else m) \ for m,s,ns in zip(self.mask, self.shape, new_shape)]) if self.mask else None return View.create(new_shape, self.strides, self.offset, mask) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def permute(self, axis: tuple[int, ...]) -> View: assert sorted(axis) == list(range(len(self.shape))), f"invalid permutation {axis} of len {len(self.shape)}" return View.create(tuple(self.shape[a] for a in axis), tuple(self.strides[a] for a in axis), self.offset, tuple(self.mask[a] for a in axis) if self.mask is not None else None) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def flip(self, arg: tuple[bool, ...]) -> View: offset = sum((s-1)*z for s,z,f in zip(self.shape, self.strides, arg) if f) mask = tuple((s-my,s-mx) if f else (mx,my) for (mx,my),s,f in zip(self.mask, self.shape, arg)) if self.mask is not None else None return View.create(self.shape, tuple(-z if f else z for z,f in zip(self.strides, arg)), self.offset+offset, mask) @functools.lru_cache(maxsize=None) # pylint: disable=method-cache-max-size-none def reshape(self, new_shape: tuple[sint, ...]) -> Optional[View]: if self.shape == new_shape: return self if not all(x >= 0 for x in new_shape): raise ValueError(f"shape can't contain negative numbers {new_shape}") # check for the same size if (self_all_int := all_int(self.shape)): assert all(isinstance(s, (int, UOp)) for s in new_shape), f"{self.shape=} -> {new_shape=} contains non (int, Variable) dim" if resolve(prod(self.shape) != prod(new_shape), False): raise ValueError(f"size mismatched, can't reshape {self.shape=} -> {new_shape=}") if 0 in self.shape: return View.create(new_shape) if new_shape == () and self.mask and any(mx==my for (mx,my) in self.mask): return None # after the asserts, it's okay to check contiguous if self.contiguous: return View.create(new_shape) # if it's not contiguous and new shape is symbolic, check if it's directly replaceable if self_all_int and not all_int(new_shape): if len(self.shape) != len(new_shape): raise ValueError(f"cannot symbolic reshape non-contiguous {self} -> {new_shape}") for si, so in zip(self.shape, new_shape): if not isinstance(so, int): so = sym_infer(so, dict([v.unbind() for v in so.vars()])) if si != so: raise ValueError(f"cannot symbolic reshape non-contiguous {self} -> {new_shape}") # all dimensions matched, return the new view directly return View(new_shape, self.strides, self.offset, self.mask, self.contiguous) r_strides, r_new_shape = [], reversed(new_shape) for merged_size, new_stride, real_size in reversed(merge_dims(self.shape, self.strides, self.mask)): # TODO: write with get_contraction acc = 1 # TODO: third resolve shouldn't be needed while resolve(acc <= merged_size) and resolve(acc != merged_size) and resolve((new_dim := next(r_new_shape, 0)) > 0): r_strides.append(new_stride * acc) acc = acc * new_dim if not resolve(acc < real_size): new_stride = 0 if resolve(acc != merged_size): return None new_strides = (0,) * (len(new_shape) - len(r_strides)) + tuple(r_strides[::-1]) if (new_mask:=_reshape_mask(self.mask, self.shape, new_shape)) is not None: extra_offset = (sum(m[0] * s for m,s in zip(self.mask, self.strides)) if self.mask else 0) - \ (sum(m[0] * s for m,s in zip(new_mask, new_strides))) return View.create(new_shape, new_strides, self.offset + extra_offset, new_mask) return None