from selfdrive.can.parser import CANParser from selfdrive.config import Conversions as CV from selfdrive.car.ford.values import DBC from common.kalman.simple_kalman import KF1D import numpy as np WHEEL_RADIUS = 0.33 def get_can_parser(CP): signals = [ # sig_name, sig_address, default ("WhlRr_W_Meas", "WheelSpeed_CG1", 0.), ("WhlRl_W_Meas", "WheelSpeed_CG1", 0.), ("WhlFr_W_Meas", "WheelSpeed_CG1", 0.), ("WhlFl_W_Meas", "WheelSpeed_CG1", 0.), ("SteWhlRelInit_An_Sns", "Steering_Wheel_Data_CG1", 0.), ("Cruise_State", "Cruise_Status", 0.), ("Set_Speed", "Cruise_Status", 0.), ("LaActAvail_D_Actl", "Lane_Keep_Assist_Status", 0), ("LaHandsOff_B_Actl", "Lane_Keep_Assist_Status", 0), ("LaActDeny_B_Actl", "Lane_Keep_Assist_Status", 0), ("ApedPosScal_Pc_Actl", "EngineData_14", 0.), ("Dist_Incr", "Steering_Buttons", 0.), ("Brake_Drv_Appl", "Cruise_Status", 0.), ("Brake_Lights", "BCM_to_HS_Body", 0.), ] checks = [ ] return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 0) class CarState(object): def __init__(self, CP): self.CP = CP self.left_blinker_on = 0 self.right_blinker_on = 0 # initialize can parser self.car_fingerprint = CP.carFingerprint # vEgo kalman filter dt = 0.01 # Q = np.matrix([[10.0, 0.0], [0.0, 100.0]]) # R = 1e3 self.v_ego_kf = KF1D(x0=np.matrix([[0.0], [0.0]]), A=np.matrix([[1.0, dt], [0.0, 1.0]]), C=np.matrix([1.0, 0.0]), K=np.matrix([[0.12287673], [0.29666309]])) self.v_ego = 0.0 def update(self, cp): # copy can_valid self.can_valid = cp.can_valid # update prevs, update must run once per loop self.prev_left_blinker_on = self.left_blinker_on self.prev_right_blinker_on = self.right_blinker_on # calc best v_ego estimate, by averaging two opposite corners self.v_wheel_fl = cp.vl["WheelSpeed_CG1"]['WhlRr_W_Meas'] * WHEEL_RADIUS self.v_wheel_fr = cp.vl["WheelSpeed_CG1"]['WhlRl_W_Meas'] * WHEEL_RADIUS self.v_wheel_rl = cp.vl["WheelSpeed_CG1"]['WhlFr_W_Meas'] * WHEEL_RADIUS self.v_wheel_rr = cp.vl["WheelSpeed_CG1"]['WhlFl_W_Meas'] * WHEEL_RADIUS self.v_wheel = float(np.mean([self.v_wheel_fl, self.v_wheel_fr, self.v_wheel_rl, self.v_wheel_rr])) # Kalman filter if abs(self.v_wheel - self.v_ego) > 2.0: # Prevent large accelerations when car starts at non zero speed self.v_ego_x = np.matrix([[self.v_wheel], [0.0]]) self.v_ego_raw = self.v_wheel v_ego_x = self.v_ego_kf.update(self.v_wheel) self.v_ego = float(v_ego_x[0]) self.a_ego = float(v_ego_x[1]) self.standstill = not self.v_wheel > 0.001 self.angle_steers = cp.vl["Steering_Wheel_Data_CG1"]['SteWhlRelInit_An_Sns'] self.v_cruise_pcm = cp.vl["Cruise_Status"]['Set_Speed'] * CV.MPH_TO_MS self.pcm_acc_status = cp.vl["Cruise_Status"]['Cruise_State'] self.main_on = cp.vl["Cruise_Status"]['Cruise_State'] != 0 self.lkas_state = cp.vl["Lane_Keep_Assist_Status"]['LaActAvail_D_Actl'] self.steer_override = not cp.vl["Lane_Keep_Assist_Status"]['LaHandsOff_B_Actl'] self.steer_error = cp.vl["Lane_Keep_Assist_Status"]['LaActDeny_B_Actl'] self.user_gas = cp.vl["EngineData_14"]['ApedPosScal_Pc_Actl'] self.brake_pressed = bool(cp.vl["Cruise_Status"]["Brake_Drv_Appl"]) self.brake_lights = bool(cp.vl["BCM_to_HS_Body"]["Brake_Lights"]) self.generic_toggle = bool(cp.vl["Steering_Buttons"]["Dist_Incr"])