#!/usr/bin/env python import os import numpy as np from selfdrive.can.parser import CANParser from cereal import car from common.realtime import sec_since_boot import zmq from selfdrive.services import service_list import selfdrive.messaging as messaging RADAR_MSGS = range(0x500, 0x540) def _create_radard_can_parser(): dbc_f = 'ford_fusion_2018_adas.dbc' msg_n = len(RADAR_MSGS) signals = zip(['X_Rel'] * msg_n + ['Angle'] * msg_n + ['V_Rel'] * msg_n, RADAR_MSGS * 3, [0] * msg_n + [0] * msg_n + [0] * msg_n) checks = zip(RADAR_MSGS, [20]*msg_n) return CANParser(os.path.splitext(dbc_f)[0], signals, checks, 1) class RadarInterface(object): def __init__(self, CP): # radar self.pts = {} self.validCnt = {key: 0 for key in RADAR_MSGS} self.track_id = 0 self.delay = 0.0 # Delay of radar # Nidec self.rcp = _create_radard_can_parser() context = zmq.Context() self.logcan = messaging.sub_sock(context, service_list['can'].port) def update(self): canMonoTimes = [] updated_messages = set() while 1: tm = int(sec_since_boot() * 1e9) updated_messages.update(self.rcp.update(tm, True)) # TODO: do not hardcode last msg if 0x53f in updated_messages: break ret = car.RadarState.new_message() errors = [] if not self.rcp.can_valid: errors.append("commIssue") ret.errors = errors ret.canMonoTimes = canMonoTimes for ii in updated_messages: cpt = self.rcp.vl[ii] if cpt['X_Rel'] > 0.00001: self.validCnt[ii] = 0 # reset counter if cpt['X_Rel'] > 0.00001: self.validCnt[ii] += 1 else: self.validCnt[ii] = max(self.validCnt[ii] -1, 0) #print ii, self.validCnt[ii], cpt['VALID'], cpt['X_Rel'], cpt['Angle'] # radar point only valid if there have been enough valid measurements if self.validCnt[ii] > 0: if ii not in self.pts: self.pts[ii] = car.RadarState.RadarPoint.new_message() self.pts[ii].trackId = self.track_id self.track_id += 1 self.pts[ii].dRel = cpt['X_Rel'] # from front of car self.pts[ii].yRel = cpt['X_Rel'] * cpt['Angle'] * np.pi / 180. # in car frame's y axis, left is positive self.pts[ii].vRel = cpt['V_Rel'] self.pts[ii].aRel = float('nan') self.pts[ii].yvRel = float('nan') self.pts[ii].measured = True else: if ii in self.pts: del self.pts[ii] ret.points = self.pts.values() return ret if __name__ == "__main__": RI = RadarInterface(None) while 1: ret = RI.update() print(chr(27) + "[2J") print ret